Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Построение однофакторных регрессионных моделей для прогноза Мето-дические указания к выполнению практических занятий по дисциплине «Планирование на предприятии» Специальность «Экономика и управле-ние на предприятии (горной промышленности и геологоразведки)» (060800) (4)
(Методические материалы)

Значок файла Оценка основных метрологических характеристик: Метод. указ. / Сост.: Ю.В. Пожидаев, Н.В. Ознобихина: СибГИУ. – Новокузнецк, 2003. – 31 с., ил.12 (5)
(Методические материалы)

Значок файла ОПРЕДЕЛЕНИЕ ПЛОЩАДИ ПОВЕРХНОСТЕЙ КОНТАКТА ФАЗ В СИСТЕМАХ МЕТАЛЛ-ШЛАК-ГАЗ В УСЛОВИЯХ ЗНАЧИТЕЛЬНОЙ ИХ ДЕФОРМАЦИИ МЕТОДАМИ ФИЗИЧЕСКОГО МОДЕЛИРОВАНИЯ (3)
(Методические материалы)

Значок файла Огнеупоры: Лабораторный практикум по дисциплинам: «Огнеупорные материалы» и «Теплотехника» /Сост. Павловец В.М.: СибГИУ. – Новокузнецк, 2003 - 23 с (6)
(Методические материалы)

Значок файла НАГРЕВ СТАЛЬНОЙ ЗАГОТОВКИ ПРИ ПО-СТОЯННОЙ ТЕМПЕРАТУРЕ ПЕЧИ Мето-дические указания к лабора-торной работе по основам теп-ломассообмена (6)
(Методические материалы)

Значок файла Варианты задач по курсу “Физика”. Часть 1: Механика, молекулярная физика. Часть 2: Электростатика, магнетизм. Метод. указ. /Сост.: Шарафутдинов Р.Ф., Ерилова Т.В.: ГОУ ВПО “СибГИУ”.- Новокузнецк, 2003. -45 с (2)
(Методические материалы)

Значок файла МЕТОДЫ ТЕРМИЧЕСКОГО АНАЛИЗА Методические ука-зания к выполнению лабораторной работы по дисциплине «Ме-тоды и средства измерений, испытаний и контроля». Специальность «Стандартизация и сертификация» (072000) (7)
(Методические материалы)

Каталог бесплатных ресурсов

Курс лекций по логике и теории алгоритмов

Оглавление
1. Логика высказываний 4
1.1. Высказывания, формулы и правила вывода . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1. Высказывания . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2. Формулы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3. Аксиомы логики высказываний . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4. Правило вывода . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2. Корректность и полнота ИВ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1. Теорема корректности . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2. Отступление об интуиционистской логике . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3. Выводимость формулы. Подготовка к доказательству теоремы полноты . . . . . . . . . . . 7
1.2.4. Путь к теореме полноты . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.5. Семантическая полнота и непротиворечивость теорий . . . . . . . . . . . . . . . . . . . . . . 8
1.2.6. Доказательство теоремы полноты CL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3. Интуиционистская логика . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2. Логика предикатов 12
2.1. Построение языка первого порядка . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1. Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2. Определения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3. Интерпретация сигнатуры. Модель. Оценки . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4. Правила логики предикатов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.5. Теорема корректности исчисления предикатов . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.6. Теорема корректности и теорема непротиворечивости
для теорий первого порядка . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.7. Теории с равенством . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2. Теории Хенкина . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1. Экзистенциальная полнота . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2. Свойство Хенкина . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3. Вложение непротиворечивых теорий в полные теории Хенкина . . . . . . . . . . . . . . . . 19
2.3. Существование модели . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1. Случай теории без равенства . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2. Случай теории с равенством . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4. Изоморфизм и элементарная эквивалентность интерпретаций . . . . . . . . . . . . . . . . . . . . . 23
2.4.1. Определения и основные свойства . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2. Сильная категоричность и счётная категоричность . . . . . . . . . . . . . . . . . . . . . . . 24
3. Теория алгоритмов 25
3.1. Введение в системы Поста . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1. Построение и примеры систем Поста . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2. Подстановки и правила . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26


Размер файла: 347.54 Кбайт
Тип файла: pdf (Mime Type: application/pdf)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров