Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Неразрушающие методы контроля Ультразвуковая дефектоскопия отливок Методические указания к выполнению практических занятий по курсу «Метрология, стандартизация и сертификация» Специальность «Литейное производство черных и цветных металлов» (110400), специализации (110401) и (110403) (6)
(Методические материалы)

Значок файла Муфта включения с поворотной шпонкой кривошипного пресса: Метод. указ. / Сост. В.А. Воскресенский, СибГИУ. - Новокуз-нецк, 2004. - 4 с (7)
(Методические материалы)

Значок файла Материальный и тепловой баланс ваграночной плавки. Методические указания /Составители: Н. И. Таран, Н. И. Швидков. СибГИУ – Новокузнецк, 2004. – 30с (9)
(Методические материалы)

Значок файла Изучение конструкции и работы лабораторного прокатного стана дуо «200» :Метод. указ. / Сост.: В.А. Воскресенский, В.В. Почетуха: ГОУ ВПО «СибГИУ». - Новокузнецк, 2003. - 8 с (10)
(Методические материалы)

Значок файла Дипломное проектирование: Метод. указ. / Сост.: И.К.Коротких, А.А.Усольцев, А.И.Куценко: СибГИУ - Новокузнецк, 2004- 21 с (8)
(Методические материалы)

Значок файла Влияние времени перемешивания смеси на ее прочность в сыром состоянии и газопроницаемость: метод. указ./ Сост.: Климов В.Я. – СибГИУ: Новокузнецк, 2004. – 8 с. (8)
(Методические материалы)

Значок файла Вероятностно-статистический анализ эксперимента: Метод. указ. / Сост.: О.Г. Приходько: ГОУ ВПО «СибГИУ». – Новокузнецк. 2004. – 18 с., ил. (8)
(Методические материалы)

Каталог бесплатных ресурсов

Правило Крамера.


СИСТЕМА ОДНОРОДНЫХ ЛИНЕЙНЫХ УРАВНЕНИЙ

Системой однородных линейных уравнений называется система вида

Ясно, что в этой случае , т.к. все элементы одного из столбцов в этих определителях равны нулю.

Так как неизвестные находятся по формулам , то в случае, когда ? ? 0, система имеет единственное нулевое решение x = y = z = 0. Однако, во многих задачах интересен вопрос о том, имеет ли однородная система решения отличные от нулевого.

Теорема. Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы ? ? 0.

Итак, если определитель ? ? 0, то система имеет единственное решение. Если же ? ? 0, то система линейных однородных уравнений имеет бесконечное множество решений.

Примеры.

  1. , а значит x=y=z=0.

СОБСТВЕННЫЕ ВЕКТОРЫ И СОБСТВЕННЫЕ ЗНАЧЕНИЯ МАТРИЦЫ

Пусть задана квадратная матрица , X – некоторая матрица–столбец, высота которой совпадает с порядком матрицы A. .

Во многих задачах приходится рассматривать уравнение относительно X

,

где ? – некоторое число. Понятно, что при любом ? это уравнение имеет нулевое решение .

Число ?, при котором это уравнение имеет ненулевые решения, называется собственным значением матрицы A, а X при таком ? называется собственным вектором матрицы A.

Найдём собственный вектор матрицы A. Поскольку E?X = X, то матричное уравнение можно переписать в виде или . В развёрнутом виде это уравнение можно переписать в виде системы линейных уравнений. Действительно .

И, следовательно,

Итак, получили систему однородных линейных уравнений для определения координат x1, x2, x3 вектора X. Чтобы система имела ненулевые решения необходимо и достаточно, чтобы определитель системы был равен нулю, т.е.



Размер файла: 50.23 Кбайт
Тип файла: rar (Mime Type: application/x-rar)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров