Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Основы микропроцессорной техники: Задания и методические указания к выполнению курсовой работы для студентов специальности 200400 «Промышленная электроника», обучающихся по сокращенной образовательной программе: Метод. указ./ Сост. Д.С. Лемешевский. – Новокузнецк: СибГИУ, 2003. – 22 с: ил. (5)
(Методические материалы)

Значок файла Организация подпрограмм и их применение для вычисления функций: Метод. указ./ Сост.: П.Н. Кунинин, А.К. Мурышкин, Д.С. Лемешевский: СибГИУ – Новокузнецк, 2003. – 15 с. (3)
(Методические материалы)

Значок файла Оптоэлектронные устройства отображения информации: Метод. указ. / Составители: Ю.А. Жаров, Н.И. Терехов: СибГИУ. –Новокузнецк, 2004. – 23 с. (3)
(Методические материалы)

Значок файла Определение частотных спектров и необходимой полосы частот видеосигналов: Метод указ./Сост.: Ю.А. Жаров: СибГИУ.- Новокузнецк, 2002.-19с., ил. (2)
(Методические материалы)

Значок файла Определение первичных и вторичных параметров кабелей связи: Метод. указ./ Сост.: Ю. А Жаров: СибГИУ. – Новокузнецк, 2002. – 18с., ил. (2)
(Методические материалы)

Значок файла Операционные усилители: Метод. указ. / Сост.: Ю. А. Жаров: СибГИУ. – Новокузнецк, 2002. – 23с., ил. (3)
(Методические материалы)

Значок файла Моделирование электротехнических устройств и систем с использованием языка Си: Метод указ. /Сост. Т.В. Богдановская, С.В. Сычев (7)
(Методические материалы)

Каталог бесплатных ресурсов

алгебраические и трансцендентные уравнения

         Приближённое решение алгебраических и трансцендентных  уравнений

1. Общая постановка задачи. *Найти действительные корни уравнения , где - алгебраическая или трансцендентная функция.

Точные методы решения уравнений подходят только к узкому классу уравнений (квадратные, биквадратные, некоторые тригонометрические, показательные, логарифмические).

В общем случае решение данного уравнения находится приближённо в следующей последовательности:

1) отделение (локализация) корня;

*2) приближённое вычисление корня до заданной точности.

2. Отделение корня. **Отделение действительного корня уравнения - это нахождение отрезка , в котором лежит только один корень данного уравнения. Такой отрезок называется отрезком изоляции (локализации) корня.

*Наиболее удобным и наглядным является графический метод отделения корней:

1) строится график функции , и определяются абсциссы точек пересечения этого графика с осью , которые и являются корнями уравнения ;

2) если - сложная функция, то её надо представить в виде   так, чтобы легко строились графики функций  и . Так как , то . Тогда абсциссы точек пересечения этих графиков и будут корнями уравнения .

Пример.*Графически отделить корень уравнения .


Решение. Представим левую часть уравнения в виде . Получим: Построим графики функций  и .

*Абсцисса точки пересечения графиков находится на отрезке , значит корень уравнения .

3. * Уточнение корня.

* Если искомый корень уравнения  отделён, т.е. определён отрезок , на котором существует только один действительный корень уравнения, то далее необходимо найти приближённое значение корня с заданной точностью.

*Такая задача называется задачей уточнения корня.

*Уточнение корня можно производить различными методами:

*1) метод половинного деления (бисекции);

*2) метод итераций;

*3) метод хорд (секущих);

*4) метод касательных (Ньютона);

*5) комбинированные методы.

*4. Метод половинного деления (бисекции).

*Отрезок изоляции корня можно уменьшить путём деления его пополам.

*Такой метод можно применять, если функция  непрерывна на отрезке  и на его концах принимает значения разных знаков, т.е. выполняется условие  (1).

*Разделим отрезок  пополам точкой , которая будет приближённым значением корня .

*Для уменьшения погрешности приближения корня уточняют отрезок изоляции корня. В этом случае продолжают делить отрезки, содержащие корень, пополам.

*Из отрезков  и  выбирают тот, для которого выполняется неравенство (1).

*В нашем случае это отрезок , где .

*Далее повторяем операцию деления отрезка пополам, т.е. находим  и так далее до тех пор, пока не будет достигнута заданная точность . Т.е. до тех пор, пока не перестанут изменяться сохраняемые в ответе десятичные знаки или до выполнения неравенства .

*Достоинство метода: простота (достаточно выполнения неравенства (1)).

*Недостаток метода: медленная сходимость результата к заданной точности.

*Пример.  Решить уравнение      методом половинного деления с точностью до 0,001.

*Решение.*Известен отрезок изоляции корня  и заданная точность . По уравнению составим функцию .

Найдём значения функции на концах отрезка:

, .

Проверим выполнение неравенства (1): - условие выполняется, значит можно применить метод половинного деления.

Найдём середину отрезка  и вычислим значение функции в полученной точке:

,     .

Среди значений