Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Пределы: Метод. указ./ Составители: С.Ф. Гаврикова, И.В. Касымова.–Новокузнецк: ГОУ ВПО «СибГИУ», 2003 (0)
(Методические материалы)

Значок файла Салихов В.А. Основы научных исследований в экономике минерального сырья: Учеб. пособие / СибГИУ. – Новокузнецк, 2004. – 124 с. (0)
(Методические материалы)

Значок файла Дмитрин В.П., Маринченко В.И. Механизированные комплексы для очистных работ. Учебное посо-бие/СибГИУ - Новокузнецк, 2003. – 112 с. (0)
(Методические материалы)

Значок файла Шпайхер Е. Д., Салихов В. А. Месторождения полезных ископаемых и их разведка: Учебное пособие. –2-е изд., перераб. и доп. / СибГИУ. - Новокузнецк, 2003. - 239 с. (0)
(Методические материалы)

Значок файла МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЭКОНОМИЧЕСКОЙ ЧАСТИ ДИПЛОМНЫХ ПРОЕКТОВ Для студентов специальности "Металлургия цветных металлов" (0)
(Методические материалы)

Значок файла Учебное пособие по выполнению курсовой работы по дисциплине «Управление производством» Специальность «Металлургия черных металлов» (110100), специализация «Электрометаллургия» (110103) (0)
(Методические материалы)

Значок файла Контрольные задания по математике для студентов заочного факультета. 1 семестр. Контрольные работы №1, №2, №3/Сост.: С.А.Лактионов, С.Ф.Гаврикова, М.С.Волошина, М.И.Журавлева, Н.Д.Калюкина : СибГИУ. –Новокузнецк, 2004.-31с. (2)
(Методические материалы)

Каталог бесплатных ресурсов

Твердые оболочки Земли: земная кора, мантия, ядро

Земная кора представляет собой верхнюю твердую оболочку Земли и имеет сложный рельеф. В рельефе суши различают горные системы, плоскогорья и равнины, а также подчиненные им формы. О рельефе океанского дна мы уже говорили выше.

            Толщина земной коры колеблется в широких пределах - от 5 до 15 км под океанами и от 20 до 70 км под континентами. Верхняя часть земной коры в пределах глубин, достигнутых бурением, доступна для непосредственного изучения. Поэтому нам более или менее достоверно известен состав вещества верхней части коры до глубин 10-12 км (максимальная глубина, достигнутая бурением, составляет немногим более 14 км (скв.Вредефорд в Южной Африке); российская сверхглубокая скважина СГ-3 на Кольском п-ве достигла глубины 12, 2 км). О более глубоких горизонтах земной коры и подстилающих ее геосфер, недоступных для непосредственного изучения, приходится судить по косвенным геофизическим данным. Однако, следует заметить, что в результате тектонических перемещений блоков земной коры иногда на поверхность Земли или в разрезы глубоких скважин попадают обломки пород из нижних частей коры или из верхней мантии (ксенолиты), поэтому их изучение позволяет судить о составе этих геосфер.

            В составе вещества земной коры выявлено 89 из 105 элементов периодической системы Менделеева. Химические элементы земной коры образуют природные химические соединения - минералы, а те, в свою очередь, путем химического или чаще механического соединения - горные породы.

            На основании многочисленных химических анализов минералов и горных пород, слагающих верхнюю часть земной коры, А.Б.Роновым и А.И.Ярошевским было вычислено среднее содержание каждого химического элемента, или кларк каждого элемента. Наибольшие кларки имеют следующие элементы (в %%): О2 - 47; Si - 29,5; Al - 8,05; Fe - 4,65; Ca - 2,96; Na - 2,50; K - 2,50; Mg - 1,87; прочие - 0,93. Вычислены также кларки для всех остальных оболочек Земли, для Солнца, Луны.

            Поскольку кислород, кремний и алюминий составляют подавляющую часть земной коры, они входят в состав всех наиболее распространенных природных соединений.

            По физическим свойствам и геофизическим характеристикам (скорости прохождения сейсмических волн, плотности, магнитной восприимчивости, теплопроводности, электропроводности и др.) земную кору принято разделять, как минимум, на три слоя: осадочный, гранитно-метаморфический и базальтовый (рис.10). Присутствие гранитно-метаморфического слоя - это признак континентальной земной коры - в океанической коре этот слой отсутствует. Разделение на слои с таким названием не означает, что породы действительно имеют состав гранитов или базальтов. Это только значит, что по сейсмическим характеристикам, т.е. по скоростям прохождения сейсмических волн через этот слой они сходны с соответствующими породами. Например, у многих метаморфических пород, относимых к гранитно-метаморфическому слою (амфиболитовых, хлоритовых сланцев, мраморов и др.), скорость прохождения сейсмических волн такая же, как у гранитов. Мощность гранитно-метаморфического слоя под континентами составляет от 10 до 40 км. Мощность базальтового слоя под континентами изменяется от 30 до 40 км, а под океанами - от 3 до 15 км. Плотность пород «гранитного» слоя составляет 2400-2600 кг/м3, базальтового - 2,8-3,3 кг/м3, вещества мантии, состоящего из ультрабазитовых пород (с пониженным содержанием SiO2), - 3,4 кг/м3.

            Земная кора - это продукт дифференциации вещества мантии, т.е. разделения этого вещества по плотности. Более легкоплавкое и менее плотное вещество, в соответствии с законом Архимеда, всплывало сквозь толщу мантии, иногда диффундируя по межмолекулярным промежуткам, а иногда проходя по трещинам, образовавшимся между отдельными блоками. Если первый способ дифференциации происходил очень медленно (скорость диффузии можно оценить величинами 10-8-10-9 см/с, то скорость массообмена по трещинам на два порядка выше - 10-6-10-7 см/с.

            Образование земной коры продолжается и в настоящее время. Так, океаническая кора формируется в рифтовых и разломных зонах срединно-океанических хребтов, а континентальная - в зонах перехода от океана к континенту: островные дуги по периферии океанов - это фрагменты сформировавшейся континентальной земной коры. Не следует думать, что вся континентальная кора находится ниже уровня Мирового океана. Так, вся шельфовая зона и верхняя часть континентального склона - это материк, прослеживающийся под уровнем моря. Имеются также участки, или фрагменты континентальной коры, находящиеся на океаническом ложе. Среди таких можно упомянуть возвышенность Ямато в центре Японского моря, Плато Манихики в юго-западной части Тихого океана и др.

            Границу между земной корой и мантией условно решили выделять на глубине, где происходит скачкообразное изменение скорости сейсмических волн. Впервые эту границу выделил югославский геофизик А.Мохоровичич. В его честь она и названа (сокращенное название - граница Мохо или М).

            Мантия простирается от границы Мохо до глубины 2900 км, где также по скачку сейсмических скоростей устанавливается ее граница с внешним ядром.

            Сейсмические методы изучения мантии выявили ее неоднородность и позволили выделить в ее пределах три слоя.

a)  верхняя мантия протягивается на глубину до 400 км и носит название слоя Гутенберга. В пределах этого слоя, в интервале глубин от 100-120 до 350-400 км под континентами и на глубине от 50-60 до 400 км под океанами, скорость продольных сейсмических волн не возрастает, а скорость поперечных волн - даже падает. Это может указывать на уменьшение вязкости вещества, и, возможно, на его частично расплавленное состояние. Эта зона внутри верхней мантии получила название астеносфера («ослабленная сфера»), в отличие от верхней твердой литосферы. В астеносферном слое располагаются первичные очаги вулканизма и проявляются процессы, приводящие к тектоническим движениям в земной коре. Поэтому для мониторинга и прогноза вулканических и сейсмических проявлений важно знать глубину астеносферы и ее соотношение с вышележащей литосферой.

b)  средняя мантия охватывает глубины Земли от 400 до 900 км. В этом слое скорости прохождения сейсмических волн резко возрастают (с 8,5 км/с до 11,2 км/с), что указывает на значительное увеличение плотности и вязкости вещества. Этот слой назван слоем Голицына.

c)  нижняя мантия располагается на глубинах от 670 до 2900 км; здесь скорости сейсмических волн с глубиной возрастают медленно, но тем не менее достигают здесь максимальных для нашей планеты значений: продольная скорость увеличивается до 13,6 км/с, а поперечная - до 7,3 км/с. Полагают, что относительно равномерное нарастание скорости с глубиной связано только с ростом давления и свидетельствует об относительно однородном строении нижней мантии. В низах этого слоя, на глубине 2700-2900 км выделяется переходная оболочка, отличающаяся по свойствам от всей остальной нижней мантии. Здесь отмечается некоторое снижение скорости продольных волн, что, вероятно, связано с переходом к внешнему ядру.

            Центральная геосфера Земли, ее ядро занимает около 17% ее объема и составляет 34% ее массы. Такое соотношение долей объема и массы обусловлено резкими различиями физических параметров ядра и мантии. В частности, на внешней границе ядра, приуроченной к поверхности Вихерта-Гутенберга (раздел между нижней мантией и внешним ядром), происходит скачкообразное снижение скорости распространения продольных волн от 13,6 до 8,1 км/с и полное затухание поперечных сейсмических волн. Это определяет специфику прохождения ядра продольными волнами, испытывающими внутри него отклонение к центру Земли. В интервале эпицентральных расстояний 103-143о образуется, таким образом, область «сейсмической тени», т.е. в этой зоне,  располагающейся на противоположной землетрясению стороне планеты, не могут быть зарегистрированы продольные сейсмические волны из-за отклонения в очень плотном веществе ядра.

            В разрезе ядра выделяются две границы - на глубинах 4980 и 5120 км, в связи с чем оно подразделяется на три элемента: внешнее ядро, переходное ядро и субъядро. Внешнее ядро обладает феноменальной особенностью скоростной характеристики - не пропускает поперечных сейсмических волн. Это свидетельствует об отсутствии здесь упругого сопротивления сдвигу. Тными словами, вещество, слагающее внешнее ядро, по отношению к сейсмическим волнам ведет себя как жидкость. По-видимому, вещество при таких давлениях и температурах не может находиться в жидком состоянии в обычном понимании этого термина, но обладает некоторыми ее свойствами. Субъядро скорее всего находится в твердом состоянии, а переходное ядро является двухфазной смесью.

            Рассмотрим кратко изменение основных физических свойств земного вещества с глубиной.

            Отсутствие прямых данных о плотности вещества обусловливает необходимость использования для ее оценок косвенных данных, в частности, данных о скорости сейсмических волн. На первый взгляд кажется, что скорости должны возрастать при увеличении плотности пород. На самом же деле, эти величины находятся в обратном соотношении:

vp =; vs =, где vp и vs, соответственно, скорости продольных и поперечных волн, s - плотность пород; l и m - упругие постоянные (коэффициенты Лямэ) (l - модуль всестороннего сжатия; m - модуль сдвига).

            Тем не менее, сопоставление изменений скорости сейсмических волн с плотностью показывает, что более плотные породы обычно характеризуются более высокой скоростью. Это объясняется тем, что возрастание плотности вещества Земли с глубиной сопровождается ростом значений коэффициентов Лямэ, приводящим к увеличению скорости сейсмических волн. Особенно значительны изменения l и m в мантии Земли, где отмечается закономерное нарастание скорости Р- и S- волн и плотности вещества.

            Оценки показывают, что средние значения плотности земной коры и Земли в целом составляют, соответственно, 2700 и 5520 кг/м3.

            Имеющиеся данные о свойствах глубинных геосфер позволяют считать, что мантии и ядру Земли свойственны черты двух агрегатных состояний, хорошо изученных в обычных условиях, - твердого и жидкого вещества. Если на вещество мантии действуют мгновенные силы, то оно ведет себя как твердое вещество, а если действие нагрузок растягивается в геологическом времени - то как жидкость. Таким образом, есть все основания считать, что Земля в целом находится в состоянии гидростатического равновесия. В этом случае изменение давления с глубиной можно оценить, исходя из массы вышележащего столба пород. Расчеты показывают, что у подошвы земной коры давление составляет около 1300 МПа, а на границе ядра - около 140000 МПа. Особенно велико давление в ядре - до 4?105 МПа. Такие давления характеризуют на мгновения давления вблизи фронта ударной волны при ядерном взрыве.

Представляет интерес изменение в Земле еще одного параметра - ускорения свободного падения (g), определение которого также связано с принятой моделью распределения плотности. На поверхности Земли среднее значение ускорения свободного падения равно 9,82 м/с2, или 982 Гал. По расчетам, с глубиной g возрастает до 10,81 м/с2 на поверхности ядра и затем круто убывает до нуля в центре Земли.

Рассмотрим методы геофизики, которые позволяют получить информацию о внутреннем строении Земли, о ее свойствах и о фазовом состоянии вещества.

            Начнем с сейсморазведочного метода, который не только самый информативный в геофизике, но и самый дорогой по стоимости его проведения. Достаточно указать, что на сейсмометрические работы затрачивается 85% средств, затрачиваемых вообще на геофизические работы. В становление и развитие сейсмометрии большой вклад внесли русские и советские ученые: Б.Б.Голицын, В.С.Воюцкий, Г.А.Гамбурцев, А.И.Заборовский, Ю.Н.Годин, Ю.В.Ризниченко, М.К.Полшков, А.М.Епинатьева, И.И.Гурвич, Л.А.Рябинкин, Е.Ф.Саваренский и др.

            Этот метод основан на изучении скорости распространения сейсмических волн в литосфере, т.е. принципиально близок к сейсмологическим

Размер файла: 81.6 Кбайт
Тип файла: doc (Mime Type: application/msword)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров