Заказ работы

Заказать
Каталог тем
Каталог бесплатных ресурсов

Система зажигания

Системы зажигания

 

Детали, которые поджигают топливовоздушную смесь в цилиндрах, часто являются предметом различных рекламных заявлений. Было бы несправедливо сказать, что все эти заявления являются фальшивыми. Но будет очень далеко от истины, если сказать, что некоторые производители преувеличивают свои обещания относительно мощности двигателя и экономии топлива, уверенные в том, что большинство потребителей не будет тщательно проверять их заверения и гарантии. Нет сомнений в том, что качественная система зажигания поможет оптимизировать работу и экономичность двигателя, но существуют практические пределы тех улучшений, которые может дать обычная или «экзотическая» система зажигания.

Бесконтактные переключающие элементы заменили механические контакты прерывателя. Однако, метод индуктивного накопления энергии для образования искры не изменился со времен Чарльза Кеттеринга.

 

Любая система зажигания независимо от ее типа и конструкции имеет две функции:

·        обеспечение воспламенения топливовоздушной смеси;

·        обеспечение того, чтобы воспламенение происходило точно в нужный момент такта сжатия для оптимизации работы двигателя и/или топливной экономичности.

Несмотря на взрывную природу распыленного бензина, если искра для воспламенения будет проскакивать в несоответствующий момент, большинство потенциальной энергии будет высвобождено перед тем, когда эта энергия обеспечила бы полезную работу поршня. Фактически, если момент зажигания будет смещен на несколько градусов, двигатель может не работать вообще. Более того, оптимальный момент зажигания изменяется  при изменении оборотов двигателя и положения дроссельной заслонки. Таким образом, система зажигания должна реагировать на изменение условий работы двигателя. В заключение, сотни миллионов искр, требуемые для обычного двигателя каждый год, должны быть генерированы со стопроцентной надежностью.

В большей или меньшей степени системы зажигания стали совершать этот «подвиг» с 1908 года, когда Чарльз Кеттеринг начал использовать систему зажигания с индуктивным накоплением энергии (английская аббревиатура IDI) для автомобильных двигателей. Механические контакты, важная часть изобретения Кеттеринга, использовались до середины 70-х годов для образования искры и, соответственно, начала сгорания. Развитие твердотельной электроники позволило заменить контакты прерывателя электронными переключающими элементами, которые гораздо более надежны и служат намного дольше.

Однако, метод образования высоковольтной искры, которая проскакивает между электродами свечи зажигания, практически не изменился со времени Чарльза Кеттеринга. Подобная система с индуктивным накоплением энергии используется практически на всех стандартных и форсированных двигателях.

Понимание основ того, как работает система зажигания, поможет вам оценить различные системы, установить нужную систему, диагностировать неисправности и что лучше всего, оптимизировать мощность двигателя. Не опасайтесь того, что вам придется углубляться в электрические «дебри» и обращаться для усовершенствования своей системы зажигания к специалистам. Система зажигания несложная, но она, вероятно, является одной из наименее доступных для понимания частей автомобильных технологий. Перейдем теперь к рассмотрению самой системы.

 

Система с индуктивным накоплением энергии

 

Весь процесс происходит в катушке зажигания. Понимание того, как работает эта необходимая деталь, является ключом к пониманию того, как работает вся система зажигания.

Катушка зажигания с технической точки зрения представляет собой трансформатор. Это означает, что она может преобразовывать напряжение в высокое или низкое, а напряжение будет способом описания усилия, с которым «движется» электричество. Его часто сравнивают с давлением в водяной трубе. Катушка зажигания состоит из двух отдельных обмоток (своеобразных катушек) из провода на обычном железном сердечнике. Одна из обмоток называется первичной и состоит примерно из 150 витков толстого медного провода. Первичная обмотка соединяется через контакты прерывателя (или через электронный блок управления) с источником напряжения 12В (аккумуляторной батареи). Другая обмотка, называемая вторичной, обычно наматывается поверх первичной. Вторичная обмотка содержит примерно 30 000 витков тонкого медного провода, и это определяет коэффициент трансформации катушки и ее возможность к генерации высокого напряжения, необходимого для проскакивания искры между электродами свечи зажигания. К примеру, если число витков вторичной обмотки будет в 10 раз превышать число витков первичной обмотки, то напряжение на вторичной обмотке будет в 10 раз больше напряжения па первичной обмотке. Так как многие катушки зажигания имеют коэффициент трансформации, равный 30 000/150, т. е. около 200:1, и напряжение вторичной обмотки будет в 200 раз больше, чем напряжение, приложенное к первичной обмотке. Однако когда вы умножите напряжение 12 В в первичной обмотке на 200, то вы получите 2400 В. Так как катушки зажигания выдают около 50 000 В, то, очевидно, существует еще и другой фактор при их работе. Ответ заключается в том, что происходит внутри катушки зажигания, когда к первичной обмотке подключается и отключается напряжение.

Существует жесткая связь между магнитным полем и электричеством. Когда электричество течет по проводнику (это называется электрическим током), то генерируется магнитное поле и, наоборот, электрический ток может генерироваться от переменного магнитного поля. Когда напряжение аккумуляторной батареи (АБ) прикладывается к первичной обмотке катушки зажигания, ток протекает через 150 витков провода и генерирует сильное магнитное поле, которое проходит через все витки катушки и через ее железный стержень. После того, как напряжение АБ было приложено примерно на 0,010-0,015 сек, магнитное поле достигает своего полного значения, т. е. за это время катушка входит в насыщение или насыщается.

Когда магнитное поле присутствует, то принципиально может образовываться электричество. Если сказать более точно, напряжение будет генерироваться пропорционально тому, как быстро увеличивается или уменьшается магнитное поле. Так как в первичной обмотке имеется ток, который поддерживает магнитное поле, отключение тока в первичной обмотке приводит к максимально быстрому спаду интенсивности магнитного поля. Спад поля происходит менее чем за 0,001 сек, и это индуцирует напряжение примерно в 250 В в первичной обмотке. Это и является тем напряжением, которое возрастает до 50 000 В благодаря коэффициенту трансформации катушки 200:1, и оно приводит к образованию искры в свече зажигания.

Использование быстро падающего магнитного поля для генерации высокого напряжения и затем для образования искры, воспламеняющей топливовоздушную смесь, было изобретением Чарльза Кеттеринга. Кеттеринг также обнаружил, что чем быстрее можно уменьшать магнитное поле, тем более надежно система зажигания будет воспламенять смесь. 

 



Размер файла: 466 Кбайт
Тип файла: doc (Mime Type: application/msword)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров