Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Говорим по-английски: Учебно-методическая разработка. /Сост.: Та- расенко В.Е. и др. ГОУ ВПО «СибГИУ». – Новокузнецк, 2004. – 28с. (3)
(Методические материалы)

Значок файла Семина О.А. Учебное пособие «Неличные формы глагола» для студентов 1 и 2 курсов, изучающих английский язык (2)
(Методические материалы)

Значок файла Семина О.А. Компьютеры. Часть 1. Учебное пособие для студентов 1 и 2 курсов, изучающих английский язык. /О.А. Семина./ – ГОУ ВПО «СибГИУ». – Новокузнецк, 2005. – 166с. (2)
(Методические материалы)

Значок файла З. В. Егорычева. Инженерная геодезия: Методические указания для студентов специальности 170200 «Машины и оборудование нефтяных и газовых промыслов» дневной и заочной формы обучения. – Красноярск, изд-во КГТУ, 2002. – 60 с. (1)
(Методические материалы)

Значок файла СУЧАСНИЙ СТАН ДЕРЖАВНОЇ ПІДТРИМКИ РОЗВИТКУ АГРАРНОГО СЕКТОРА УКРАЇНИ (1)
(Статьи)

Значок файла ОРГАНІЗАЦІЙНО-ФУНКЦІОНАЛЬНІ ЗАСАДИ ДЕРЖАВНОГО ПРОТЕКЦІОНІЗМУ В АГРОПРОМИСЛОВОМУ КОМПЛЕКСІ УКРАЇНИ (3)
(Статьи)

Значок файла Характеристика контрольно-наглядових повноважень центральних банків романо-германської системи права (3)
(Рефераты)

Каталог бесплатных ресурсов

Исследование влияния частоты переменного электрического поля на яркость люминесценции различных люминофоров

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ

1.                       ЛИТЕРАТУРНЫЙ ОБЗОР

            Общие положения теории люминесценции

            Разгорание и затухание люминесценции

            Кривые термовысвечивания

            ЭЛЕКТРОЛЮМИНЕСЦЕНЦИЯ

            Зависимость интегральной и мгновенной яркости электролюминесценции от напряжения

            Зависимость интегральной яркости электролюминесценции от частоты

            Зависимость интегральной яркости электролюминесценции

 от температуры

            ДЕЙСТВИЕ НА ЛЮМИНОФОРЫ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

            ЭЛЕКТРОФОТОЛЮМИНЕСЦЕНЦИЯ

            Эффекты Гуддена-Поля и Дэшена

            Новые эксперименты по эффектам, вызванным электрическим полем

            Свечение при одновременном действии поля и света 

            Тушение фотолюминесценции полем

            Изменение электролюминесценции при освещении

2.       МЕТОДИЧЕСКАЯ ЧАСТЬ  

2.1.    Методика измерения яркости электролюминесценции

3    ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ   

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА

ВВЕДЕНИЕ

 

Известно, что яркость фотолюминесценции непрерывно возбуждаемого светом кристаллофосфора при помещении его в электрическое поле изменяется. Ранее проведенные исследования в этой области были выполнены почти исключительно на электролюминофорах, причем измерения проводились при сравнительно низких напряжениях, как правило, до величин, при которых наблюдалась электролюминесценция.

Естественно допустить, что полевое фотолюминесценции может проявляться и у других типов люминофоров, не обладающих при этом электролюминесценцией.

Данная работа является продолжением комплексных исследований по изучению явлений, возникающих при одновременном действии электрического поля и возбуждающего излучения на кристаллофосфоры.

Целью работы является исследование влияния переменного и постоянного электрического поля на фотолюминесценцию различных люминофоров.

Для достижения поставленной цели был определен ряд задач:

1 – установление взаимосвязи между глубиной эффекта полевого тушения фотолюминесценции к типам кристаллической решетки основы люминофора.

2 – изучение действия электрического поля на люминофоры различного класса.

3 – исследование влияния частоты и напряженности электрического поля на яркость фотолюминесценции кристаллофосфора при различных режимах фотовозбуждения.

4 – изучение влияния постоянного электрического поля на фотолюминесценцию люминофора с длительным послесвечением.

1. ЛИТЕРАТУРНЫЙ ОБЗОР

 

1.1. ОБЩИЕ ПОЛОЖЕНИЯ ТЕОРИИ ЛЮМИНЕСЦЕНЦИИ

 

Согласно представлениям квантовой теории процесс люминесценции связан с тем, что при возбуждении люминофоров происходит возбуждение электронов атома активатора. Возвращение электронов в основное состояние сопровождается излучением света с длиной волны,  характерной для данного активатора. У целого ряда люминофоров, так называемых характеристических, электронные переходы связанные с поглощением и излучением энергии, происходят внутри иона активатора, вошедшего в кристаллическую решетку основы  люминофора. Люминофоры характеристического типа представляют собой диэлектрики.[1].

К этому классу  люминофоров относятся, как правило,  люминофоры с широкой запрещенной зоной, характерными представителями которых являются так называемые оксидные люминофоры. Отличительными признаками таких люминофоров являются отсутствие у них фотопроводимости и экспоненциальный закон затухания.

Существует обширный класс люминофоров у которых поглощение энергии может происходить не только на уровнях активатора, но и в основном веществе. В этом случае энергия поглощенная в основе люминофора, передается ионам активатора. Процесс передачи энергии осуществляется переносом электронов и дырок, а излучение происходит в результате рекомбинации свободных электронов с любым центром свечения; такие люминофоры обладают фотопроводимостью. Описываемый процесс свечения называют рекомбинационным; обычно он характеризуется сложным законом затухания люминесценции. Первая кратковременная стадия процесса затухания протекает по экспоненциальному закону, а на дальних стадиях затухание продолжается по закону, близкому к гиперболическому. При возбуждении светом люминофоров этого типа их электрические свойства изменяются: наблюдается внутренний фотоэффект, изменяются электропроводимость и величина диэлектрической проницаемости [2].

Люминофоры рекомбинационного типа представляют собой, как правило, полупроводники. К ним относятся и соединения типа АIIВVI.

Из основных представлений квантовой механики следует, что в кристаллической решётке твердого тела вследствие взаимодействия атомов уровни электронов в них расщепляются на столько подуровней, сколько атомов вступает во взаимодействие. Совокупность таких подуровней образует энергетическую зону. В зависимости от того, насколько были заполнены уровни электронами при образовании зоны, она может быть незаполненной, частично заполненной и заполненной: В обычных люминофорах предполагается существование заполненной зоны (иногда называемой валентной) и незаполненной, в которой  электроны могут свободно перемещаться ­(зоны проводимости). Зоны разделены промежутком, переходы в котором запрещены (запрещенная зона). Ширина запрещенной зоны у сульфидных люминофоров составляет несколько электрон-вольт. Введение примесей (активаторов) приводит к местным нарушениям в решетке кристаллов и создает условия для образования энергетических уровней в запрещенной зоне (рис. 1).

Энергетические уровни А1 и А2 возникающие при введении активатора, paсполагаются в запрещенной зоне II.­

Предполагается также, что наряду с уровнями активатора в запрещённой зоне существуют уровни захвата (ловушки Л), связанные с образованием различных дефектов в решетке и с введением в нее некоторых примеcей. Ловушек может быть несколько, и они могут иметь различную глубину. При воз­буждении люминофоров электроны могут локализоваться на любом из указанных уровней.

При возбуждении люминофора энергия может поглощать­ся как на уровнях активатора, так и в основном веществе люминофора. В первом случае поглощение света сопровождается переходом электрона с основного уровня активатора А1 на возбужденный уровень А2 (1), а излучение света имеет место при переходе (2), который соответствует возвращению электрона на основной уровень. Электроны, вырванные  возбуждающим светом, могут также перейти в зону проводимости (3) и быть захваченными. на ловушках (4). Освобождение электронов с ловушек (5) может быть осуществлено только в том случае, если им будет сообщена соответствующая энергия (при нагревании люминофора,            действии инфракрасных лучей, электрического поля и др.)      [3, 4]

При этом электроны могут либо вновь захватываться ловушками, либо перейти на уровень активатора (6) и рекомбинировать с центром свечения. При поглощении света в основе люминофора электроны переходят из валентной зоны в зону проводимости (7). Образовавшиеся в валентной зоне дырки могут перейти на уровень активатора и создать, на нем положительные заряды. В этом случае излучение происходит в результате рекомбинации электронов из зоны проводимости с дырками на уровне активатора. Как следует из приведенной схемы электронных переходов, в результате возбуждения центры люминесценции могут быть ионизованы, а оторванные от них электроны захвачены на ловушках. После прекращения возбуждения электроны постепенно освобождаются с ловушек и рекомбинируют с ионизованными центрами. Этим объясняется явление послесвечения [3].

 

1.1.1. Разгорание и затухание люминесценции

Законы разгорания и затухания люминесценции различны для люминофоров разных классов.

У характеристических люминофоров разгорание свечения может происходить постепенно и через некоторое время достигать стационарного значения (рис.2).

Затухание свечения этих люминофоров в большинстве случаев происходит по экспоненциальному закону:

It=I0e-t/?

где I0 - интенсивность свече­ния в начальный момент после прекращения возбуждения;

It  - интенсивность        свече­ния в момент времени t;

? -время жизни атома ак­тиватора в возбужденном состоянии.

Время затухания у характеристических люминофоров не зависит от интенсивности возбуждения и от температуры. По экспоненциальному закону затухают люминофоры на основе фосфатов, силикатов, арсенатов и германатов [5]. В тех случаях, когда характеристические люминофоры имеют два активатора (например, галофосфат кальция, активированный Sb и Mn), свечение каждого из них затухает по экспоненциальному закону [6]. Следует отметить, что для люминофоров указанного типа не всегда точно соблюдается экспо­ненциальный характер затухания. В некоторых случаях (например, у силиката цинка, активированного Mn) на на­чальных стадиях затухание происходит по экспоненциаль­ном у закону, а на дальних стадиях по закону, описываемому гиперболой; в этой области интенсивность свечения зависит от температуры [5].

На рис. 3 представлена типичная кривая. разгорания свечения для люминофоров рекомбинационного типа: свечение достигает стационарного состояния через некоторое время, тем более длительное, чем меньше интенсивность возбуждающего света.

Следует отметить, что время, в течение которого интенсивность люминесценции достигает стационарного состояния, в этом случае намного больше, чем в случае характеристических люминофоров. Исследование разгорания люминофоров ZnS:Сu и ZnS:Ag при помощи тауметра [7] показало, что на начальных стадиях оно протекает по закону, близкому к экспоненциальному

I~?(1-е-t/?),

причем величина t зависит от интенсивности возбуждения ?, сильно уменьшаясь при ее увеличении.

Закон затухания свечения люминофоров рекомбинационного типа имеет сложный характер [8,9,10]. При возбуждении таких люминофоров освобожденные электроны могут перемещаться по кристаллу и рекомбинировать с любым ионизованным центром или локализоваться на ловушках. Теоретически в этом случае закон затухания определяется выражением, которое соответствует гиперболе второго порядка. У реальных люминофоров закон затухания обычно отклоняется от указанной зависимости. Антонову-Романовскому [11] удалось показать, что затухание свечения отдельных кристаллов ZnS:Сu в течение определённого промежутка времени происходит точно по гиперболе второго порядка. В общем случае кривые затухания свечения могут иметь начальный экспоненциальный участок и участок, на котором интенсивность люминесценции уменьшается согласно эмпирической формуле Беккереля:

It=It/(1+at)n

 

где 1 ?n?2.

Исследование затухания люминофоров ZnS:Сu и ZnS:Ag при помощи тауметра показало, что на начальных стадиях закон затухания отличается от закона Беккереля, причем время, в течение которого наблюдаются отклонения, уменьшается при увеличении интенсивности возбуждающего света. На дальних стадиях закон затухания переходит в гиперболический. Отклонение закона затухания от простого гиперболического объясняется тем, что в люминофорах существуют уровни захвата (ловушки) различной глубины, и кинетика свечения зависит от распределения электронов между центрами люминесценции и ловушками [9,10]. Из расчетов, проведенных Фоком [10], следует, что когда большая часть электронов в зоне проводимости не попадает на ловушки, а рекомбинирует с ионизованными центрами, закон затухания будет экспоненциальным, (это соответствует начальному участку на­ кривой затухания). По мере затухания люминесценции число ионизованных центров уменьшается, и вероятность локализации электронов на ловушках становится больше вероятности рекомбинации их с ионизованными центрами. В этом случае закон затухания будет гиперболическим (второй участок на кривой затухания).



Размер файла: 39.5 Кбайт
Тип файла: doc (Mime Type: application/msword)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров