Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Построение однофакторных регрессионных моделей для прогноза Мето-дические указания к выполнению практических занятий по дисциплине «Планирование на предприятии» Специальность «Экономика и управле-ние на предприятии (горной промышленности и геологоразведки)» (060800) (4)
(Методические материалы)

Значок файла Оценка основных метрологических характеристик: Метод. указ. / Сост.: Ю.В. Пожидаев, Н.В. Ознобихина: СибГИУ. – Новокузнецк, 2003. – 31 с., ил.12 (4)
(Методические материалы)

Значок файла ОПРЕДЕЛЕНИЕ ПЛОЩАДИ ПОВЕРХНОСТЕЙ КОНТАКТА ФАЗ В СИСТЕМАХ МЕТАЛЛ-ШЛАК-ГАЗ В УСЛОВИЯХ ЗНАЧИТЕЛЬНОЙ ИХ ДЕФОРМАЦИИ МЕТОДАМИ ФИЗИЧЕСКОГО МОДЕЛИРОВАНИЯ (2)
(Методические материалы)

Значок файла Огнеупоры: Лабораторный практикум по дисциплинам: «Огнеупорные материалы» и «Теплотехника» /Сост. Павловец В.М.: СибГИУ. – Новокузнецк, 2003 - 23 с (4)
(Методические материалы)

Значок файла НАГРЕВ СТАЛЬНОЙ ЗАГОТОВКИ ПРИ ПО-СТОЯННОЙ ТЕМПЕРАТУРЕ ПЕЧИ Мето-дические указания к лабора-торной работе по основам теп-ломассообмена (5)
(Методические материалы)

Значок файла Варианты задач по курсу “Физика”. Часть 1: Механика, молекулярная физика. Часть 2: Электростатика, магнетизм. Метод. указ. /Сост.: Шарафутдинов Р.Ф., Ерилова Т.В.: ГОУ ВПО “СибГИУ”.- Новокузнецк, 2003. -45 с (2)
(Методические материалы)

Значок файла МЕТОДЫ ТЕРМИЧЕСКОГО АНАЛИЗА Методические ука-зания к выполнению лабораторной работы по дисциплине «Ме-тоды и средства измерений, испытаний и контроля». Специальность «Стандартизация и сертификация» (072000) (7)
(Методические материалы)

Каталог бесплатных ресурсов

ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ

Пусть имеем функцию y=f(x), где x – независимая переменная. Тогда дифференциал этой функции dy=f'(x)dx также зависит от переменной x, причем от x зависит только первый сомножитель f'(x) , а dx = ?x от x не зависит (приращение в данной точке x можно выбирать независимо от этой точки). Рассматривая dy как функцию x, мы можем найти дифференциал этой функции.

Дифференциал от дифференциала данной функции y=f(x) называется вторым дифференциалом или дифференциалом второго порядка этой функции и обозначается d2y: d(dy)=d2y.

Найдем выражение второго дифференциала. Т.к. dxот x не зависит, то при нахождении производной его можно считать постоянным, поэтому

d2y = d(dy) = d[f '(x)dx)] = [f '(x)dx]'dx = f ''(x)dx·dx = f ''(x)(dx)2.

Принято записывать (dx)2 = dx2. Итак, d2у= f''(x)dx2.

Аналогично третьим дифференциалом или дифференциалом третьего порядка функции называется дифференциал от ее второго дифференциала:

d3y=d(d2y)=[f ''(x)dx2]'dx=f '''(x)dx3.

Вообще дифференциалом n-го порядка называется первый дифференциал от дифференциала (n – 1)-го порядка: dn(y)=d(dn-1y)

dny = f (n)(x)dxn

Отсюда, пользуясь дифференциалами различных порядков, производную любого порядка можно представить как отношение дифференциалов соответствующего порядка:


ПРОИЗВОДНАЯ НЕЯВНОЙ ФУНКЦИИ

Пусть значения двух переменных x и y связаны между собой некоторым уравнением, которое символически запишем так:

F(x, y) = 0. (1)

Если на некотором множестве D каждому значению переменной x соответствует единственное значение y, которое вместе с x удовлетворяет уравнению (1), то будем говорить, что это уравнение задает неявную функцию y=f(x).

Из определения следует, что для любой неявной функции y=f(x), заданной уравнением (1), имеет место тождество F(x, f(x)) ? 0, справедливое при всех x ? D.

Например, уравнение x2 + y2a2 = 0 неявно определяет две элементарные функции . Действительно, после подстановки в исходное уравнение этих значений получим равенство x2+(a2x2) – a2 = 0.

Однако, не всякую неявно заданную функцию можно представить явно, т.е. в виде y=f(x).

Например, функции, заданные уравнениями y2yx2=0 или , не выражаются через элементарные функции, т.е. эти уравнения нельзя разрешить относительно y.

Заметим, что каждая явная функция y=f(x) может быть представлена и как неявная yf(x) = 0.

Таким образом, неявная функция – это определенный способ задания зависимости между переменными x и y.

Рассмотрим правило нахождения производной неявной функции, не преобразовывая ее в явную, т.е. не представляя в виде y=f(x).

Чтобы найти производную у' неявной функции F(x, y)=0, нужно обе части этого уравнения продифференцировать по x, рассматривая у как функцию от x, и из этого полученного уравнения найти искомую производную y'. Чтобы найти y'', нужно уравнение F(x, y)=0 дважды продифференцировать по x и выразить y'' и т.д.

Примеры. Найти производные функций заданных неявно.



Размер файла: 57.96 Кбайт
Тип файла: rar (Mime Type: application/x-rar)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров