Заказ работы

Заказать
Каталог тем
Каталог бесплатных ресурсов

Свойства определителей. Обратная матрица

  1. Если квадратная матрица AT является транспонированной матрицей A, то их определители совпадают |AT | = |A|, т.е. определитель не меняется, если заменить его строки столбцами и обратно, например, для определителя третьего порядка .

    Доказательство проводится проверкой, т.е. сравнением обеих частей записанного равенства. Вычислим определители, стоящие слева и справа:

  2. При перестановке 2-х строк или столбцов определитель изменит знак на противоположный, сохраняя абсолютную величину, т.е., например,

    Доказательство проводится аналогично доказательству свойства 1 сравнением обеих частей. Проведём его для определителя второго порядка.

    .

    Для определителя третьего порядка проверьте самостоятельно.

  3. Если определитель имеет две одинаковые строки или столбца, то он равен нулю. Например, .

    Действительно, если переставить здесь 2-ю и 3-ю строки, то по свойству 2 этот определитель должен изменить знак, но сам определитель в данном случае не меняется, т.е. получаем |A| = –|A| или |A| = 0.

  4. Общий множитель строки или столбца можно выносить за знак определителя. Например, .

    Доказательство проводится проверкой, как и свойство 1. (Самостоятельно)

  5. Если все элементы какой–либо строки или столбца определителя равны нулю, то сам определитель равен нулю. (Доказательство – проверкой).
  6. Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель можно представить в виде суммы 2-х определителей по формуле, например,

    .

    Доказательство - проверкой, аналогично свойству 1.

  7. Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель не изменит своей величины. Например,

    .

    Докажем это равенство, используя предыдущие свойства определителя.



Размер файла: 62.34 Кбайт
Тип файла: rar (Mime Type: application/x-rar)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров