Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Определение показателя адиабаты воздуха методом Клемана-Дезорма: Метод, указ. / Сост.: Е.А. Будовских, В.А. Петрунин, Н.Н. Назарова, В.Е. Громов: СибГИУ.- Новокузнецк, 2001.- 13 (4)
(Методические материалы)

Значок файла ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЁМКОСТИ ГАЗА ПРИ ПОСТОЯННОМ ДАВЛЕНИИ К ТЕПЛОЁМКОСТИ ГАЗА ПРИ ПОСТОЯННОМ ОБЪЁМЕ (3)
(Методические материалы)

Значок файла Лабораторная работа 8. ОПРЕДЕЛЕНИЕ ДИСПЕРСИИ ПРИЗМЫ И ДИСПЕРСИИ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ СТЕКЛА (5)
(Методические материалы)

Значок файла ОПРЕДЕЛЕНИЕ УГЛА ПОГАСАНИЯ В КРИСТАЛЛЕ С ПО-МОЩЬЮ ПОЛЯРИЗАЦИОННОГО МИКРОСКОПА Лабораторный практикум по курсу "Общая физика" (4)
(Методические материалы)

Значок файла Лабораторная работа 7. ПОЛЯРИЗАЦИЯ СВЕТА. ПРОВЕРКА ЗАКОНА МАЛЮСА (6)
(Методические материалы)

Значок файла Лабораторная работа № 7. ИЗУЧЕНИЕ ВРАЩЕНИЯ ПЛОЩАДИ ПОЛЯРИЗАЦИИ С ПОМОЩЬЮ САХАРИМЕТРА (5)
(Методические материалы)

Значок файла Лабораторная работа 6. ДИФРАКЦИЯ ЛАЗЕРНОГО СВЕТА НА ЩЕЛИ (7)
(Методические материалы)

Каталог бесплатных ресурсов

РАЗВИТИЕ ЖИЗНИ НА ЗЕМЛЕ

Биологическая эволюция на Земле длится более
3 млрд. лет. С момента возникновения первых примитив-
ных клеточных организмов благодаря естественному от-
бору возникло бесчисленное множество форм живых
организмов. Приспособленность групп организмов до-
стигается разными путями, но магистральный путь -
прогрессивное усложнение организации, образование
все более высоких форм жизни. Рассмотрим основные
этапы эволюции.

Историю Земли принято делить на промежутки вре-
мени, границами которых являются геологические изме-
нения - горообразовательные процессы, поднятия и
опускания суши, изменения очертаний материков (рис.
58), глобальные изменения климата и т. д.

В архейской эре появились первые живые организ-
мы. Они были гетеротрофами, использовавшими в каче-
стве пищи органические соединения <первичного бульо-
на>. Важнейший этап эволюции жизни на Земле связан
с возникновением фотосинтеза, что обусловило разделе-
ние органического мира на растительный и животный.
Первыми фотосинтезирующими организмами были си-
незеленые водоросли - цианеи. Цианеи и появившиеся
затем зеленые водоросли выделяли в атмосферу из океа-
на свободный кислород.

Это способствовало возникновению бактерий, спо-
собных жить в аэробной среде. По-видимому, в это же
время-на границе архейской и протерозойской эр-
произошло еще два крупных эволюционных события:
появились половой процесс и многоклеточность. Чтобы
яснее представить значение двух последних ароморфо-

-158-

Рис. 58. Изменение очертаний
суши в мезозойскую и кайно-
зойскую эры:

А - конец палеозое, 230 млн. лет
назад, Б - мезозой - 180 млв.
лет назад, В - конец мезозоя,
110 млн. лет назад

зов, остановимся на них подробнее. Гаплоидные орга-
низмы (микробы, синезеленые водоросли) имеют один
набор хромосом. Каждая новая мутация сразу же про-
является в фенотипе. Если мутация полезна, она сохра-
няется отбором, если вредна, устраняется отбором. Гап-
лоидные организмы непрерывно приспосабливаются
к среде, но принципиально новых признаков и свойств
у них не возникает. Половой процесс резко повышает
возможности приспособления к условиям среды вслед-
ствие создания бесчисленных комбинаций в хромосо-
мах. Диплоидность, возникшая одновременно с оформ-
ленным ядром, позволяет сохранять мутации в гетеро-
зиготном состоянии и использовать их как резерв на-
следственной изменчивости для дальнейших эволюцион-
ных преобразований. Кроме того, многие мутации в гете-
розиготном состоянии часто повышают жизнеспособ-
ность особей и, следовательно, увеличивают их шансы
в борьбе за существование. Возникновение диплоидно-
сти и генетической разнородности одноклеточных эука-
риот, с одной стороны, обусловило многообразие строе-
ния клеток и их объединение в колонии, с другой -
возможность "разделения труда" между клетками коло-
нии, т. е. образование многоклеточных организмов.
Возможности эволюции одноклеточных организмов ог-
раничены. Размеры отдельных клеток не могут увели-

-159-

чиваться больше определенного предела вследствие
уменьшения отношения поверхности клетки к ее объему.
В связи с этим снижается поступление кислорода в клет-
ку, интенсивность дыхания становится ниже оптималь-
ной. Имеет значение и то обстоятельство, что органоиды
клетки, выполняющие строго специфические функции,
не могут играть роль <кирпичиков> для построения
сложных многофункциональных структур. Такими <кир-
пичиками> являются клетки.

Разделение функций клеток у первых колониальных
многоклеточных организмов привело к образованию
первичных тканей - эктодермы и энтодермы, диффе-
ренцированных по структуре в зависимости от выпол-
няемой функции. Дальнейшая дифференцировка тканей
создала разнообразие, необходимое для расширения
структурных и функциональных возможностей организ-
ма в целом, в результате чего создавались все более
сложные и специализированные (морфологически и
функционально) системы органов. Совершенствование
взаимодействия между клетками - сначала контактно-
го, а затем опосредованного с помощью нервной и эн-
докринной систем, обеспечило существование многокле-
точного организма как единого целого со сложным и
тонким взаимодействием его частей и реагированием
на окружающую среду.

В основе современных представлений о происхожде-
нии многоклеточных организмов лежит гипотеза рус-
ского ученого И. И. Мечникова - гипотеза <фагоци-
теллы>. По-видимому, предками многоклеточных были
гетеротрофные и колониальные жгутиковые. Первичный
способ их питания - фагоцитоз. Клетки, захватившие
добычу, перемещались внутрь колонии. Затем из них об-
разовался внутренний слой - энтодерма, выполнявший
пищеварительную функцию. Вначале такая колония
с едва наметившейся дифференцировкой клеток была
шаровидной, свободно плавала в воде. После выделения
в колонии половых и соматических клеток, а среди пос-
ледних - движущих (эктодерма) и питающих (энто-
дерма) колония превратилась в примитивный, но цело-
стный многоклеточный организм. Дальнейшая судьба
первых многоклеточных была различной. Некоторые пе-
решли к сидячему образу жизни и превратились в орга-
низмы типа губок. Другие стали ползать, перемещаться
по субстрату с помощью ресничек. От них произошли
плоские черви. Третьи сохранили плавающий образ

-160-

жизни, приобрели рот и дали начало кишечнополост-
ным (рис. 59).

В протерозойской эре в морях уже обитало много
различных водорослей, в том числе прикрепленные ко
дну формы. Суша была безжизненной, но по берегам

Рис. 59. Схема основных этапов эволюции эукариотических
организмов

-161-


водоемов начались почво-
образовательные процессы
в результате деятельности
бактерий и микроскопиче-
ских водорослей. Начальные
звенья эволюции животных
не сохранились. В протеро-
зойских отложениях нахо-
дят представителей вполне
сформировавшихся типов
животных: губок, кишечно-
полостных, членистоногих.


Рис. 60. Первое наземное расте-
ние псилофит

В начале палеозойской
эры растения населяют в ос-
новном моря, но в ордови-
ке - силуре   появляются
первые наземные расте-
ния-псилофиты (рис. 60).
Это были небольшие расте-
ния, занимающие промежу-
точное положение между

водорослями и наземными сосудистыми растениями.
Псилофиты имели уже проводящую (сосудистую) си-
стему, первые слабодифференцированные ткани, могли
укрепляться в почве, хотя корни еще (как и другие
вегетативные органы) отсутствовали. Дальнейшая эво-
люция растений на суше была направлена на дифферен-
цировку тела на вегетативные органы и ткани, совер-
шенствование сосудистой системы (обеспечивающей
быстрое поднятие воды на большую высоту). Уже в за-
сушливом девоне широко распространяются хвощи,
плауны, папоротникообразные. Еще большего развития
достигает наземная растительность в каменно-
угольном периоде (карбоне), характеризую-
щемся влажным и теплым климатом на протяжении
всего года. Появляются голосеменные растения, про-
изошедшие от семенных папоротников. Переход к семен-
ному размножению дал много преимуществ: зародыш
в семенах защищен от неблагоприятных условий обо-
лочками и обеспечен пищей, имеет диплоидное число
хромосом. У части голосеменных (хвойных) процесс
полового размножения уже не связан с водой. Опыление
у голосеменных осуществляется ветром, а семени имеют
приспособления для распространения животными. Эти
и другие преимущества способствовали широкому рас-

-162-

пространению семенных растений. Крупные споровые
растения вымирают в пермском периоде в связи с ис-
сушением климата.

Животный мир в палеозойской эре развивался чрез-
вычайно бурно и был представлен большим количеством
разнообразных форм. Пышного расцвета достигает
жизнь в морях. В кембрийском периоде уже существуют
все основные типы животных, кроме хордовых. Губки,
кораллы, иглокожие, разнообразные моллюски, гро-
мадные хищные ракоскорпионы - вот неполный пере-
чень обитателей кембрийских морей.

В ордовике продолжается совершенствование и
специализация основных типов. Впервые обнаружи-
ваются остатки животных, имевших внутренний осевой
скелет,- бесчелюстных позвоночных, отдаленными по-
томками которых являются современные миноги и мик-
сины. Рот этих своеобразных организмов представлял
собой простое отверстие, ведущее в пищеварительный
тракт. Передний отдел пищеварительной трубки был
пронизан жаберными щелями, между которыми распо-
лагались опорные хрящевые жаберные дуги. Бесчелю-
стные питались организмами, обитающими в илистом
дне рек и озер, и детритом (органическими остатками),
засасывая пищу ртом. У части бесчелюстных возникло
расчленение жаберных дуг, что позволило изменять про-
свет глотки с помощью жаберной мускулатуры и, следо-
вательно, удерживать попавшую в пищеварительную
трубку подвижную добычу. Отбор благоприятствовал
дальнейшему совершенствованию аппарата захвата
живой добычи, гораздо более питательной со сравнению
с илистым детритом. Третья пара жаберных дуг пре-
вратилась в челюсти, усаженные зубами. Жаберная
мускулатура преобразовалась в челюстную и подъязыч-
ную. Так на основе существовавших структур - скелет-
ных жаберных дуг, служивших опорой органов дыха-
ния, возник ротовой аппарат хватательного типа. Ново-
образовавшиеся челюсти оказались органом очень
стойким и сохранились в последующей эволюции позво-
ночных.

Появление хватательного ротового аппарата -
крупный ароморфоз - вызвало перестройку всей орга-
низации позвоночных. Возможность выбирать пищу
способствовала улучшению ориентации в пространстве
путем совершенствования органов чувств. Первые че-
люстноротые не имели плавников и передвигались в во-

-163-

де путем змееподобных движений. Это неэффективный
способ передвижения при необходимости поймать дви-
жущуюся добычу. Поэтому каждая кожная складка
имела значение для улучшения передвижения в воде.
Вначале возникает непрерывная кожная складка, иду-
щая по средней линии вдоль спины, огибающая задний
конец тела и продолжающаяся на брюшной стороне
до заднепроходного отверстия. В филогенезе определен-
ные участки этой складки развиваются дальше и дают
начало плавникам, свойственным современным рыбам,
промежуточные части отстают в развитии и редуци-
руются. Функция спинного и анального плавников -
киль и рули, служащие для направления движения в
горизонтальной плоскости. Хвостовой плавник - орган
движения. Парные плавники также возникают в виде
боковых кожных складок. Боковая складка служила ру-
лем глубины, причем наибольшее значение имели перед-
няя и задняя ее части. Они превратились в парные груд-
ные и брюшные плавники, средняя часть складки реду-
цировалась.

Возникновение парных плавников - конечностей -
следующий крупный ароморфоз в эволюции позвоноч-
ных. С увеличением размеров складок потребовался ске-
лет для их укрепления. Скелет возник в виде ряда хря-
щевых (затем костных) лучей. Очень важно, что хря-
щевые лучи оказываются связанными между собой хря-
щевой пластинкой, тянущейся вдоль основания плавни-
ков. Эта пластинка дала начало поясу конечностей.

Итак, челюстноротые позвоночные приобрели хва-
тательный ротовой аппарат и конечности. В своей эво-
люции они разделились на хрящевых и костных рыб.

В силурийском периоде на сушу вместе с
псилофитами вышли первые дышащие воздухом живот-
ные - членистоногие. В водоемах продолжалось интен-
сивное развитие низших позвоночных. Предполагается,
что позвоночные возникли в мелких пресноводных во-
доемах и лишь затем переселились в моря.

В девоне позвоночные представлены тремя группа-
ми: двоякодышащими, лучеперыми и кистеперыми ры-
бами. Кистеперые рыбы были типично водными живот-
ными, но могли дышать атмосферным воздухом с по-
мощью примитивных легких, представлявших собой вы-
пячивания стенки кишки. Чтобы понять дальнейшую
эволюцию рыб, необходимо иметь в виду характер кли-
матических условий в девонском периоде. Большая

-164-

часть суши представляла собой безжизненную пустыню.
По берегам пресноводных водоемов в густых зарослях
растений обитали кольчатые черви, членистоногие, в
конце девона появились насекомые (кормовая база для
будущих наземных позвоночных). Климат сухой, с рез-
кими колебаниями температуры в течение суток и по се-
зонам. Уровень воды в реках и водоемах часто менялся.
Многие водоемы полностью высыхали, зимой промерза-
ли. Водная растительность гибла при пересыхании во-
доемов, накапливались и затем гнили растительные
остатки. Все это создавало очень неблагоприятную сре-
ду для рыб. В этих условиях их могло спасти только
дыхание атмосферным воздухом. Таким образом, воз-
никновение легких можно рассматривать как идиоадап-

Размер файла: 122.39 Кбайт
Тип файла: txt (Mime Type: text/plain)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров