Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Пределы: Метод. указ./ Составители: С.Ф. Гаврикова, И.В. Касымова.–Новокузнецк: ГОУ ВПО «СибГИУ», 2003 (3)
(Методические материалы)

Значок файла Салихов В.А. Основы научных исследований в экономике минерального сырья: Учеб. пособие / СибГИУ. – Новокузнецк, 2004. – 124 с. (2)
(Методические материалы)

Значок файла Дмитрин В.П., Маринченко В.И. Механизированные комплексы для очистных работ. Учебное посо-бие/СибГИУ - Новокузнецк, 2003. – 112 с. (5)
(Методические материалы)

Значок файла Шпайхер Е. Д., Салихов В. А. Месторождения полезных ископаемых и их разведка: Учебное пособие. –2-е изд., перераб. и доп. / СибГИУ. - Новокузнецк, 2003. - 239 с. (4)
(Методические материалы)

Значок файла МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЭКОНОМИЧЕСКОЙ ЧАСТИ ДИПЛОМНЫХ ПРОЕКТОВ Для студентов специальности "Металлургия цветных металлов" (2)
(Методические материалы)

Значок файла Учебное пособие по выполнению курсовой работы по дисциплине «Управление производством» Специальность «Металлургия черных металлов» (110100), специализация «Электрометаллургия» (110103) (2)
(Методические материалы)

Значок файла Контрольные задания по математике для студентов заочного факультета. 1 семестр. Контрольные работы №1, №2, №3/Сост.: С.А.Лактионов, С.Ф.Гаврикова, М.С.Волошина, М.И.Журавлева, Н.Д.Калюкина : СибГИУ. –Новокузнецк, 2004.-31с. (6)
(Методические материалы)

Каталог бесплатных ресурсов

Интерполяция многочленами

Если задана функция y(x), то это означает, что любому допустимому значению х сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико­-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую функцию j(х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают у(х)»j(х).

Большая часть классического численного анализа основывается на приближении многочленами, так как с ними легко работать. Однако для многих целей используются и другие классы функций.

Выбрав узловые точки и класс приближающих функций, мы должны ещё выбрать одну определённую функцию из этого класса посредством некоторого критерия — некоторой меры приближения или «согласия». Прежде чем начать вычисления, мы должны решить также, какую точность мы хотим иметь в ответе и какой критерий мы изберём для измерения этой точности.

Всё изложенное можно сформулировать в виде четырёх вопросов:

1. Какие узлы мы будем использовать?

2. Какой класс приближающих функций мы будем использовать?

3. Какой критерий согласия мы применим?

4. Какую точность мы хотим?

Существуют 3 класса или группы функций, широко применяемых в численном анализе. Первая группа включает в себя линейные комбинации функций 1, х, х2, …, хn, что совпадает с классом всех многочленов степени n (или меньше). Второй класс образуют функции cos aix, sin aix. Этот класс имеет отношение к рядам Фурье и интегралу Фурье. Третья группа образуется функциями e-az. Эти функции встречаются в реальных ситуациях. К ним, например, приводят задачи накопления и распада.

Что касается критерия согласия, то классическим критерием согласия является «точное совпадение в узловых точках». Этот критерий имеет преимущество простоты теории и выполнения вычислений, но также неудобство из-за игнорирования шума (погрешности, возникающей при измерении или вычислении значений в узловых точках). Другой относительно хороший критерий — это «наименьшие квадраты». Он означает, что сумма квадратов отклонений в узловых точках должна быть наименьшей возможной или, другими словами, минимизирована. Этот критерий использует ошибочную информацию, чтобы получить некоторое сглаживание шума. Третий критерий связывается с именем Чебышева. Основная идея его состоит в том, чтобы уменьшить максимальное отклонение до минимума. Очевидно, возможны и другие критерии.

Более конкретно ответить на поставленные 4 вопроса можно лишь исходя из условий и цели каждой отдельной задачи.

 

Интерполяция многочленами

Цель задачи о приближении (интерполяции): данную функцию у(х) требуется приблизительно заменить некоторой функцией j(х), свойства которой нам известны так, чтобы отклонение в заданной области было наименьшим. интерполяционные формулы применяются, прежде всего, при замене графически заданной функции аналитической, а также для интерполяции в таблицах.

 

Методы интерполяции Лагранжа и Ньютона

Один из подходов к задаче интерполяции — метод Лагранжа. Основная идея этого метода состоит в том, чтобы прежде всего найти многочлен, который принимает значение 1 в одной узловой точке и 0 во всех других. Легко видеть, сто функция

                  

является требуемым многочленом степени n; он равен 1, если x=xj и 0, когда x=xi, i?j. Многочлен Lj(x)?yj принимает значения yi в i-й узловой точке и равен 0 во всех других узлах. Из этого следует, что  есть многочлен степени n, проходящий через n+1 точку (xi, yi).

Другой подход — метод Ньютона (метод разделённых разностей). Этот метод позволяет получить аппроксимирующие значения функции без построения в явном виде аппроксимирующего полинома. В результате получаем формулу для полинома Pn, аппроксимирующую функцию f(x):

P(x)=P(x0)+(x-x0)P(x0,x1)+(x-x0)(x-x1)P(x0,x1,x2)+…+

(x-x0)(x-x1)…(x-xn)P(x0,x1,…,xn);

 

                    — разделённая разность 1-го порядка;

                    — разделённая разность 2-го порядка и т.д.

Значения Pn(x) в узлах совпадают со значениями f(x)

Фактически формулы Лагранжа и Ньютона порождают один и тот же полином, разница только в алгоритме его построения.

 

Сплайн-аппроксимация

Другой метод аппроксимации — сплайн-аппроксимация — отличается от полиномиальной аппроксимации Лагранжем и Ньютоном. Сплайном называется функция, которая вместе с несколькими производными непрерывна на отрезке [a, b], а на каждом частном интервале этого отрезка [xi, xi+1] в отдельности являются некоторым многочленом невысокой степени. В настоящее время применяют кубический сплайн, то есть на каждом локальном интервале функция приближается к полиному 3-го порядка. Трудности такой аппроксимации связаны с низкой степенью полинома, поэтому сплайн плохо аппроксимируется с большой первой производной. Сплайновая интерполяция напоминает лагранжевую тем, что требует только значения в узлах, но не её производных.

 

Метод наименьших квадратов

Предположим, что требуется заменить некоторую величину и делается n измерений, результаты которых равны xi=x+ei (i=1, 2, …, n), где ei — это ошибки (или шум) измерений, а х — истинное значение. Метод наименьших квадратов утверждает, что наилучшее приближённое значение  есть такое число, для которого минимальна сумма квадратов отклонений от :

                  

Один из наиболее общих случаев применения этого метода состоит в том, что имеющиеся n наблюдений (xi, yi) (i=1, 2, …, n) требуется приблизить многочленом степени m<n  

                   y(x)=a0+a1x+a2x2+…+amxm

Вычисленная кривая у(х) в некотором смысле даёт сложное множество значений уi. Метод наименьших квадратов утверждает, что следует выбирать многочлен, минимизирующий функцию.

                              ?

Для нахождения минимума дифференцируем ? по каждой из неизвестных ak. В результате получим:

                  

Определитель этой системы отличен от нуля и задача имеет единственное решение. Но система степеней не ортогональна, и при больших значениях n задача плохо обусловлена. Эту трудность можно обойти, используя многочлены ортогональные с заданным весом

Размер файла: 72.84 Кбайт
Тип файла: doc (Mime Type: application/msword)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров