Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Определение показателя адиабаты воздуха методом Клемана-Дезорма: Метод, указ. / Сост.: Е.А. Будовских, В.А. Петрунин, Н.Н. Назарова, В.Е. Громов: СибГИУ.- Новокузнецк, 2001.- 13 (4)
(Методические материалы)

Значок файла ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЁМКОСТИ ГАЗА ПРИ ПОСТОЯННОМ ДАВЛЕНИИ К ТЕПЛОЁМКОСТИ ГАЗА ПРИ ПОСТОЯННОМ ОБЪЁМЕ (3)
(Методические материалы)

Значок файла Лабораторная работа 8. ОПРЕДЕЛЕНИЕ ДИСПЕРСИИ ПРИЗМЫ И ДИСПЕРСИИ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ СТЕКЛА (6)
(Методические материалы)

Значок файла ОПРЕДЕЛЕНИЕ УГЛА ПОГАСАНИЯ В КРИСТАЛЛЕ С ПО-МОЩЬЮ ПОЛЯРИЗАЦИОННОГО МИКРОСКОПА Лабораторный практикум по курсу "Общая физика" (4)
(Методические материалы)

Значок файла Лабораторная работа 7. ПОЛЯРИЗАЦИЯ СВЕТА. ПРОВЕРКА ЗАКОНА МАЛЮСА (7)
(Методические материалы)

Значок файла Лабораторная работа № 7. ИЗУЧЕНИЕ ВРАЩЕНИЯ ПЛОЩАДИ ПОЛЯРИЗАЦИИ С ПОМОЩЬЮ САХАРИМЕТРА (6)
(Методические материалы)

Значок файла Лабораторная работа 6. ДИФРАКЦИЯ ЛАЗЕРНОГО СВЕТА НА ЩЕЛИ (8)
(Методические материалы)

Каталог бесплатных ресурсов

Ймовірності влучення випадкової величини

Числову характеристику законів розподілу, що   виражає  їхню невизначеність, називають ентропією. Невизначеність оцінюється тільки по ймовірностях значень випадкової величини; самі значення випадкової величини в оцінці невизначеності не фігурують. Необхідність введення невизначеності як характеристики випливає з того, що закони, що мають однакові перші моменти, можуть характеризуватися різним ступенем невизначеності.  Величину ентропії для дискретних законів розподілу визначають за формулою

Для визначення ентропії безперервної випадкової величини скористаємося виразом (3.3) у якості вихідного. Розіб'ємо шкалу рівнів безперервної випадкової величини  на невеликі ділянки  й усередині кожної ділянки виберемо крапки так, щоб виконувалася умова

Вираз (3.4) характеризує ймовірність влучення випадкової величини в інтервал . Заміна безперервної випадкової величини сукупністю дискретних значень буде тим точніше, чим менше ділянки .

Для одержання ентропії безперервної випадкової величини використовують формулу (3.3) для ентропії еквівалентної дискретної випадкової величини та здійснюють граничний перехід  при . Тоді з урахуванням умови нормування щільності ймовірності одержують вираз для ентропії безперервної випадкової величини у вигляді двох доданків, з яких перший визначається законом розподілу, а другий прагне до нескінченності:

Отже, ентропія безперервної випадкової величини  дорівнює нескінченності. Однак у реальних умовах відлік повідомлень на прийомній стороні виробляється в дискретних крапках внаслідок кінцевої точності та розв'язної здатності апаратури, тобто інтервали  мають скінченну величину, тому другий доданок у формулі (3.5) має постійну величину і зазвичай виключається з розгляду.

Перший доданок

являє собою так звану диференціальну ентропію. Диференціальна ентропія залежить від статистики повідомлень. Ентропія дискретних законів є безрозмірною величиною, а ентропія безперервних законів має розмірність самої величини .

  Доведено, що при заданій середній потужності (дисперсії ) максимальну ентропію має нормальний закон розподілу ймовірностей. Якщо ж задана пікова потужність, то максимальну ентропію має рівномірний закон розподілу. В табл. 3.1 наведені імовірнісні та інформаційні характеристики досліджуваних випадкових процесів.

  У класичній статистиці зазвичай розглядається параметрична модель: вибірка  відповідає розподілу відомого виду, тобто функція розподілу F(x) задана з точністю до одного або двох невідомих параметрів. Найчастіше припускають, що розподіл вибірки гауссів, а невідомі лише його параметри: математичне очікування –  і середньоквадратичне відхилення (СКВ) – . Зрозуміло, це досить обмежені припущення, і на практиці необхідно їх перевірити.

Оцінка параметра , отримана по вибірці, є випадковою величиною. Властивості оцінок повинні відповідати основним вимогам до оцінок:

– незміщеність –  оцінка  параметра  є незміщеною, якщо її математичне очікування дорівнює шуканому параметру: ;

слушність – оцінка  називається слушною, якщо при збільшенні обсягу вибірки  вона прямує до істинного значення параметра (за імовірністю): , ;

– ефективність –  оцінка  називається ефективною (у визначеному класі оцінок), якщо вона має мінімальну дисперсію в цьому класі.

Ці властивості оцінок обумовлюють можливості їхнього застосування на практиці. Вимога незміщеності на практиці не завжди доцільна, оскільки оцінка з невеликим зміщенням і малою дисперсією може виявитися більш вагомою, ніж незміщена оцінка з великою дисперсією.

Основними методами оцінювання є: 1) метод максимальної правдоподібності; 2) метод моментів; 3) метод найменших квадратів (МНК).

Таблиця 3.1 - Імовірнісні та інформаційні характеристики досліджуваних випадкових процесів

 

 

 

 

 

 

 

 



Размер файла: 1.53 Мбайт
Тип файла: doc (Mime Type: application/msword)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров