Лекции по высшей математике Б1 1.2 Определение. Сумма членов бесконечной числовой последовательности называется числовым рядом. При этом числа будем называть членами ряда, а un – общим членом ряда. Определение. Суммы , n = 1, 2, … называются частными (частичными) суммами ряда. Таким образом, возможно рассматривать последовательности частичных сумм ряда S1, S2, …,Sn, … Определение. Ряд называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм. Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы. Свойства рядов. 1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда. 2) Рассмотрим два ряда и , где С – постоянное число. Теорема. Если ряд сходится и его сумма равна S, то ряд тоже сходится, и его сумма равна СS. (C ? 0) 3) Рассмотрим два ряда и . Суммой или разностью этих рядов будет называться ряд , где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами. Теорема. Если ряды и сходятся и их суммы равны соответственно S и ?, то ряд тоже сходится и его сумма равна S + ?. Разность двух сходящихся рядов также будет сходящимся рядом. Сумма сходящегося и расходящегося рядов будет расходящимся рядом. О сумме двух расходящихся рядов общего утверждения сделать нельзя. При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда. Критерий Коши. (необходимые и достаточные условия сходимости ряда) Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любого существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство: . 1.3 Определение. Ряд называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда. Теорема. (Критерий Коши равномерной сходимости ряда) Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа ?>0 существовал такой номер N(?), что при n>N и любом целом p>0 неравенство выполнялось бы для всех х на отрезке [a,b]. Теорема. (Признак равномерной сходимости Вейерштрасса) (Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик) Ряд сходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами : т.е. имеет место неравенство: . Еще говорят, что в этом случае функциональный ряд мажорируется числовым рядом . Б2 2.2 ряд называется положительным, если Un?0, для всех n € N Интегральный признак Коши. Если ?(х) – непрерывная положительная функция, убывающая на промежутке [1;?), то ряд ?(1) + ?(2) + …+ ?(n) + … = и несобственный интеграл одинаковы в смысле сходимости. Пример. Ряд сходится при ?>1 и расходится ??1 т.к. соответствующий несобственный интеграл сходится при ?>1 и расходится ??1. Ряд называется общегармоническим рядом. Следствие. Если f(x) и ?(х) – непрерывные функции на интервале (a, b] и то интегралы и ведут себя одинаково в смысле сходимости. 2.3 Степенные ряды. Определение. Степенным рядом называется ряд вида . Для исследования на сходимость степенных рядов удобно использовать признак Даламбера. Пример. Исследовать на сходимость ряд Применяем признак Даламбера: . Получаем, что этот ряд сходится при и расходится при . Теперь определим сходимость в граничных точках 1 и –1. При х = 1: ряд сходится по признаку Лейбница (см. Признак Лейбница.). При х = -1: ряд расходится (гармонический ряд). 1 теорема Абеля. (Нильс Хенрик Абель (1802 – 1829) – норвежский математик) Теорема. Если степенной ряд сходится при x = x1 , то он сходится и притом абсолютно для всех . Доказательство. По условию теоремы, так как члены ряда ограничены, то где k- некоторое постоянное число. Справедливо следующее неравенство: Из этого неравенства видно, что при x 1 – расходится. Если ? = 1, то на вопрос о сходимости ответить нельзя. Пример. Определить сходимость ряда . Вывод: ряд сходится. Пример. Определить сходимость ряда Вывод: ряд сходится. . . Б7 Нормальные системы обыкновенных дифференциальных уравнений. Определение. Совокупность соотношений вида: где х- независимая переменная, у1, у2,…,уn – искомые функции, называется системой дифференциальных уравнений первого порядка. Определение. Система дифференциальных уравнений первого порядка, разрешенных относительно производных от неизвестных функций называется нормальной системой дифференциальных уравнений. Такая система имеет вид: (1) Для примера можно сказать, что график решения системы двух дифференциальных уравнений представляет собой интегральную кривую в трехмерном пространстве. Теорема. (Теорема Коши). Если в некоторой области (n-1) –мерного пространства функции … непрерывны и имеют непрерывные частные производные по , то для любой точки этой области существует единственное решение системы дифференциальных уравнений вида (1), определенное в некоторой окрестности точки х0 и удовлетворяющее начальным условиям Определение. Общим решением системы дифференциальных уравнений вида (1) будет совокупность функций , , … , которые при подстановке в систему (1) обращают ее в тождество Ряды с неотрицательными членами. При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами. Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены. Признак сравнения рядов с неотрицательными членами. Пусть даны два ряда и при un, vn ? 0. Теорема. Если un ? vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда . Доказательство. Обозначим через Sn и ?n частные суммы рядов и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n ?n ? M, где М – некоторое число. Но т.к. un ? vn, то Sn ? ?n то частные суммы ряда тоже ограничены, а этого достаточно для сходимости. Также используется следующий признак сходимости: Теорема. Если и существует предел , где h – число, отличное от нуля, то ряды и ведут одинаково в смысле сходимости. Признак Коши. (радикальный признак) Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство , то ряд сходится, если же для всех достаточно больших n выполняется неравенство то ряд расходится. Следствие. Если существует предел , то при ?<1 ряд сходится, а при ?>1 ряд расходится. Интегральный признак Коши. Если ?(х) – непрерывная положительная функция, убывающая на промежутке [1;?), то ряд ?(1) + ?(2) + …+ ?(n) + … = и несобственный интеграл одинаковы в смысле сходимости. Пример. Ряд сходится при ?>1 и расходится ??1 т.к. соответствующий несобственный интеграл сходится при ?>1 и расходится ??1. Ряд называется общегармоническим рядом. Следствие. Если f(x) и ?(х) – непрерывные функции на интервале (a, b] и то интегралы и ведут себя одинаково в смысле сходимости. Б8 Знакочередующиеся ряды. Знакочередующийся ряд можно записать в виде: где Признак Лейбница. Если у знакочередующегося ряда абсолютные величины ui убывают и общий член стремится к нулю , то ряд сходится. Признаки Даламбера и Коши для знакопеременных рядов. Пусть - знакопеременный ряд. Признак Даламбера. Если существует предел , то при ?<1 ряд будет абсолютно сходящимся, а при ?>1 ряд будет расходящимся. При ?=1 признак не дает ответа о сходимости ряда. Признак Коши. Если существует предел , то при ?<1 ряд будет абсолютно сходящимся, а при ?>1 ряд будет расходящимся. При ?=1 признак не дает ответа о сходимости ряда. Пример. Разложить в ряд функцию при помощи интегрирования. При получаем по приведенной выше формуле: Разложение в ряд функции может быть легко найдено способом алгебраического деления аналогично рассмотренному выше примеру. Тогда получаем: Окончательно получим: Б9 Абсолютная и условная сходимость рядов. Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков). (1) и ряд, составленный из абсолютных величин членов ряда (1): (2) Теорема. Из сходимости ряда (2) следует сходимость ряда (1). Доказательство. Ряд (2) является рядом с неотрицательными членами. Если ряд (2) сходится, то по критерию Коши для любого ?>0 существует число N, такое, что при n>N и любом целом p>0 верно неравенство: По свойству абсолютных величин: То есть по критерию Коши из сходимости ряда (2) следует сходимость ряда (1). Определение. Ряд называется абсолютно сходящимся, если сходится ряд . Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают. Определение. Ряд называется условно сходящимся, если он сходится, а ряд расходится. Свойства абсолютно сходящихся рядов. 1) Теорема. Для абсолютной сходимости ряда необходимо и достаточно, чтобы его можно было представить в виде разности двух сходящихся рядов с неотрицательными членами. Следствие. Условно сходящийся ряд является разностью двух расходящихся рядов с неотрицательными стремящимися к нулю членами. 2) В сходящемся ряде любая группировка членов ряда, не изменяющая их порядка, сохраняет сходимость и величину ряда. 3) Если ряд сходится абсолютно, то ряд, полученный из него любой перестановкой членов, также абсолютно сходится и имеет ту же сумму. Перестановкой членов условно сходящегося ряда можно получить условно сходящийся ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд. 4) Теорема. При любой группировке членов абсолютно сходящегося ряда (при этом число групп может быть как конечным, так и бесконечным и число членов в группе может быть как конечным, так и бесконечным) получается сходящийся ряд, сумма которого равна сумме исходного ряда. 5) Если ряды и сходятся абсолютно и их суммы равны соответственно S и ?, то ряд, составленный из всех произведений вида взятых в каком угодно порядке, также сходится абсолютно и его сумма равна S?? - произведению сумм перемножаемых рядов. Если же производить перемножение условно сходящихся рядов, то в результате можно получить расходящийся ряд. Тригонометрический ряд. Определение. Тригонометрическим рядом называется ряд вида: или, короче, Действительные числа ai, bi называются коэффициентами тригонометрического ряда. Если ряд представленного выше типа сходится, то его сумма представляет собой периодическую функцию с периодом 2?, т.к. функции sinnx и cosnx также периодические функции с периодом 2?. Пусть тригонометрический ряд равномерно сходится на отрезке [-?; ?], а следовательно, и на любом отрезке в силу периодичности, и его сумма равна f(x). Определим коэффициенты этого ряда. Для решения этой задачи воспользуемся следующими равенствами: Справедливость этих равенств вытекает из применения к подынтегральному выражению тригонометрических формул. Подробнее см. Интегрирование тригонометрических функций. Т.к. функция f(x) непрерывна на отрезке [-?; ?], то существует интеграл Такой результат получается в результате того, что . Получаем: Далее умножаем выражение разложения функции в ряд на cosnx и интегрируем в пределах от -? до ?. Отсюда получаем: Аналогично умножаем выражение разложения функции в ряд на sinnx и интегрируем в пределах от -? до ?. Получаем: Выражение для коэффициента а0 является частным случаем для выражения коэффициентов an. Таким образом, если функция f(x) – любая периодическая функция периода 2?, непрерывная на отрезке [-?; ?] или имеющая на этом отрезке конечное число точек разрыва первого рода, то коэффициенты существуют и называются коэффициентами Фурье для функции f(x). Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье. Б10 Функциональные ряды. Определение. Частными (частичными) суммами функционального ряда называются функции Определение. Функциональный ряд называется сходящимся в точке (х=х0), если в этой точке сходится последовательность его частных сумм. Предел последовательности называется суммой ряда в точке х0. Определение. Совокупность всех значений х, для которых сходится ряд называется областью сходимости ряда. Определение. Ряд называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда. Теорема. (Критерий Коши равномерной сходимости ряда) Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа ?>0 существовал такой номер N(?), что при n>N и любом целом p>0 неравенство выполнялось бы для всех х на отрезке [a,b]. Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье. Достаточные признаки разложимости в ряд Фурье. Теорема. (Теорема Дирихле) Если функция f(x) имеет период 2? и на отрезке [-?;?] непрерывна или имеет конечное число точек разрыва первого рода, и отрезок [-?;?] можно разбить на конечное число отрезков так, что внутри каждого из них функция f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях х, причем в точках непрерывности функции f(x) его сумма равна f(x), а в точках разрыва его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x). Функция f(x), для которой выполняются условия теоремы Дирихле называется кусочно – монотонной на отрезке [-?;?]. Теорема. Если функция f(x) имеет период 2?, кроме того, f(x) и ее производная f’(x) – непрерывные функции на отрезке [-?;?] или имеют конечное число точек разрыва первого рода на этом отрезке, то ряд Фурье функции f(x) сходится при всех значениях х, причем в точках непрерывности его сумма равна f(x), а в точках разрыва она равна . При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x). Функция, удовлетворяющая условиям этой теоремы, называется кусочно – гладкой на отрезке [-?;?]. Разложение в ряд Фурье непериодической функции. Задача разложения непериодической функции в ряд Фурье в принципе не отличается от разложения в ряд Фурье периодической функции. Допустим, функция f(x) задана на отрезке [a, b] и является на этом отрезке кусочно – монотонной. Рассмотрим произвольную периодическую кусочно – монотонную функцию f1(x) c периодом 2Т ? ?b-a?, совпадающую с функцией f(x) на отрезке [a, b]. y f(x) ? - 2T ? a b ?+2T ? + 4T x Таким образом, функция f(x) была дополнена. Теперь функция f1(x) разлагается в ряд Фурье. Сумма этого ряда во всех точках отрезка [a, b] совпадает с функцией f(x), т.е. можно считать, что функция f(x) разложена в ряд Фурье на отрезке [a, b]. Таким образом, если функция f(x) задана на отрезке, равном 2? ничем не отличается от разложения в ряд периодической функции. Если же отрезок, на котором задана функция, меньше, чем 2?, то функция продолжается на интервал (b, a + 2?) так, что условия разложимости в ряд Фурье сохранялись. Вообще говоря, в этом случае продолжение заданной функции на отрезок (интервал) длиной 2? может быть произведено бесконечным количеством способов, поэтому суммы получившихся рядов будут различны, но они будут совпадать с заданной функцией f(x) на отрезке [a,b] Б11 Свойства равномерно сходящихся рядов. 1) Теорема о непрерывности суммы ряда. Если члены ряда - непрерывные на отрезке [a,b] функции и ряд сходится равномерно, то и его сумма S(x) есть непрерывная функция на отрезке [a,b]. 2) Теорема о почленном интегрировании ряда. Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b] , сходится к интегралу от суммы ряда по этому отрезку. 3) Теорема о почленном дифференцировании ряда. Если члены ряда сходящегося на отрезке [a,b] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно. На основе того, что сумма ряда является некоторой функцией от переменной х, можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями. На практике часто применяется разложение функций в степенной ряд Теорема. (Признак равномерной сходимости Вейерштрасса) (Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик) Ряд сходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами : т.е. имеет место неравенство: . Еще говорят, что в этом случае функциональный ряд мажорируется числовым рядом Ряды Фурье для функций любого периода. Ряд Фурье для функции f(x) периода Т = 2l, непрерывной или имеющей конечное число точек разрыва первого рода на отрезке [-l, l] имеет вид: Для четной функции произвольного периода разложение в ряд Фурье имеет вид: Для нечетной функции: Теорема. (Теорема Дирихле) Если функция f(x) имеет период 2? и на отрезке [-?;?] непрерывна или имеет конечное число точек разрыва первого рода, и отрезок [-?;?] можно разбить на конечное число отрезков так, что внутри каждого из них функция f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях х, причем в точках непрерывности функции f(x) его сумма равна f(x), а в точках разрыва его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. При этом ряд Фурье функции f(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x).