Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Методические указания к научно-исследовательской работе студентов по курсу “Социология”. Ч. 1/ Сост.: Е. А. Сафонова: СибГИУ. - Новокузнецк, 2003. – 45 (3)
(Методические материалы)

Значок файла Методические рекомендации для практических занятий по психологии: Метод. указ./ Сост.: С. Г. Колесов: СибГИУ. – Новокузнецк, 2002. – 29 (9)
(Методические материалы)

Значок файла Методические указания по проведению производственной практики (первой). Специальность «Промышленное и гражданское строительство» (290300) (4)
(Методические материалы)

Значок файла Контроль качества бетона. Определение прочности бетона неразру-шающими методами. Методические указания к выполнению лабора-торных работ по курсу «Технология строительных процессов». Специ-альность «Промышленное и гражданское строительство» (290300) (7)
(Методические материалы)

Значок файла Динамика. Тема 6. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ: Расч. прак./ Сост.: Г.Т. Баранова, Н.И. Михайленко: СибГИУ.-Новокузнецк, 2003.- с (3)
(Методические материалы)

Значок файла Семенихин А.Я. С 30 Технология подземных горных работ: Учебное пособие / А.Я. Семенихин, В.И. Любогощев, Ю.А. Златицкая. – Новокузнецк: СибГИУ, 2003. - 91 с (23)
(Методические материалы)

Значок файла Огнев С.П., Ляховец М.В. Основы теории управления: методические указания. – Новокузнецк: ГОУ ВПО «СибГИУ», 2004. – 45 с (20)
(Методические материалы)

Каталог бесплатных ресурсов

М. Р. Пентус. Введение в математическую логику Краткий конспект лекций

1 Введение
1.1 Предварительные сведения
1.1. В этом курсе нуль является натуральным числом. Множество всех натураль-
ных чисел обозначается N. Множество всех целых чисел обозначается Z. Множество
всех рациональных чисел обозначается Q. Множество всех действительных чисел
обозначается R.
1.2. Натуральные числа будем обозначать буквами i, j, k, l, m, n (возможно,
с индексами).
1.3. Множество A называется счётным, если существует б иекция между A и N.
1.4. Принцип математической индукции состоит в следующем: утверждение
A(x), зависящее от натурального параметра x, считается доказанным, если дока-
зано A(0) и для любого натурального числа n из предположения, что верно A(n),
выведено, что верно также A(n + 1).
Часто удобно пользоваться следующей эквивалентной формой принципа матема-
тической индукции, называемой иногда принципом возвратной индукции: утвер-
ждение A(x), зависящее от натурального параметра x, считается доказанным, если
для всякого натурального числа n из предположения, что A(x) верно при любом
натуральном x < n, следует, что A(x) верно также при x = n.
1.5. Формула, начинающаяся с квантора существования по пустому множеству,
ложна. Формула, начинающаяся с квантора всеобщности по пустому множеству,
истинна.


Размер файла: 688.57 Кбайт
Тип файла: pdf (Mime Type: application/pdf)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров