Заказ работы

Заказать
Каталог тем
Арифметические операции над числами с фиксированной точкой

Сложение (вычитание). Операция вычитания приводится к операции сложения путем преобразования чисел в обратный или дополнительный код. Пусть числа A=>O и В=>О, тогда операция алгебраического сложения выполняется в соответствии с табл. 2.3.

Таблица 2.3

Таблица преобразования кодов при алгебраическом сложении

Требуемая операция

Необходимое преобразование

А+В

А-В

-А+В

-А-В

А+В

А+(-В)

(-А)+В

(-А)+(-В)

 Скобки в представленных выражениях указывают на замену операции вычитания операцией сложения с обратным или дополнительным кодом соответствующего числа. Сложение двоичных чисел осуществляется последовательно, поразрядно в соответствии с табл. 2.2. При выполнении сложения цифр необходимо соблюдать следующие правила.

1. Слагаемые должны иметь одинаковое число разрядов. Для выравнивания разрядной сетки слагаемых можно дописывать незначащие нули слева к целой части числа и незначащие нули справа к дробной части числа.

2. Знаковые разряды чисел участвуют в сложении так же, как и значащие.

3. Необходимые преобразования кодов (п.2.3.1) производятся с изменением знаков чисел. Приписанные незначащие нули изменяют свое значение при преобразованиях по общему правилу.

4. При образовании единицы переноса из старшего знакового разряда, в случае использования ОК, эта единица складывается с младшим числовым разрядом. При использовании ДК единица переноса теряется. Знак результата формируется автоматически, результат представляется в том коде, в котором представлены исходные слагаемые.

Пример 2.9. Сложить два числа А10=7 В10=16

A2=+11=+0111;

B2=+1000=+10000.

Исходные числа имеют различную разрядность, необходимо провести выравнивание разрядной сетки:

[A2]П=[A2]OK=[A2]ДК=0: 00111;

[B2]П=[B2]OK=[B2]ДК=0: 10000.

Сложение в обратном или дополнительном коде дает один и тот же результат

glava 227.jpg

Обратим внимание, что при сложении цифр отсутствуют переносы в знаковый разряд и из знакового разряда, что свидетельствует о получении правильного результата.

Пример 2.10. Сложить два числа А10 = + 16 В10 = —7 в ОК и ДК. В соответствии с табл. 2.3 должна быть реализована зависимость А+(-В), в которой второй член преобразуется с учетом знака

glava 228.jpg

При сложении чисел в ОК и ДК были получены переносы в знаковый разряд и из знакового разряда. В случае ОК перенос из знакового разряда требует дополнительного прибавления единицы младшего разряда (см.п.4 правил). В случае ДК этот перенос игнорируется.

Умножение. Умножение двоичных чисел наиболее просто .реализуется в прямом коде. Рассмотрим, каким образом оно приводится к операциям сложения и сдвигам.

Пример 2.11. Умножить два числа А10=7 В10=5.

Перемножим эти числа, представленные прямыми двоичными кодами, так же, как это делается в десятичной системе.

Нетрудно видеть, что произведение получается путём сложения частных произведений, представляющих собой разряды множимого, сдвинутые влево в соответствии с позициями разрядов множителя. Частные произведения, полученные умножением на нуль игнорируются. Важной особенностью операции умножения n-разрядных сомножителей является увеличение разрядности произведения до n+n=2n. Знак произведения формируется путём сложения знаковых разрядов сомножителей. Возможные переносы из знакового разряда игнорируются.

Деление. Операция деления, как и в десятичной арифметике, является обратной операции умножения. Покажем, что и эта операция приводится к последовательности операций сложения и сдвига.

Пример 2.12. Разделить два числа А10=45 B10 =5

glava 229.jpg

Деление произведено так же, как это делается обычно в десятичной системе. Сначала проверяется, можно ли вычесть значение делителя из старших разрядов делимого. Если возможно, то в разряде частного записывается единица и определяется частная разница. В противном случае в частное записывается нуль и разряды делителя сдвигаются вправо на один разряд по отношению к разрядам делимого. К полученной предыдущей разнице сносится очередная цифра делимого, и данный процесс повторяется, пока не будет получена необходимая точность. Если учесть, что все вычитания в ЭВМ заменяются сложением в ОК или в ДК (см. табл.2.3), то действительно операция деления приводится к операциям сложения и сдвигам вправо разрядов делителя относительно разрядов делимого. Отметим, что делимое перед операцией деления должно быть приведено к 2n-разрядной сетке. Только в этом случае при делении на n-разрядный делитель получается n-разрядное частное.

Знак частного формируется также путем сложения знаковых разрядов делимого и делителя, как это делалось при умножении.

2.3.3. Арифметические операции над двоичными числами с плавающей точкой

В современных ЭВМ числа с плавающей точкой хранятся в памяти машин, имея мантиссу и порядок (характеристику) в прямом коде и нормализованном виде. Все арифметические действия над этими числами выполняются так же, как это делается с ними, если они представлены в полулогарифмической форме (мантисса и десятичный порядок) в десятичной системе счисления. Порядки и мантиссы обрабатываются раздельно.

Сложение (вычитание). Операция сложения (вычитания) производится в следующей последовательности.

1. Сравниваются порядки (характеристики) исходных чисел путем их вычитания р=р1-р2. При выполнении этой операции определяется, одинаковый ли порядок имеют исходные слагаемые.

2. Если разность порядков равна нулю, то это значит, что одноименные разряды мантисс имеют одинаковые веса (двоичный порядок). В противном случае должно проводиться выравнивание порядков.

3. Для выравнивания порядков число с меньшим порядком сдвигается вправо на разницу порядков Ар. Младшие выталкиваемые разряды при этом теряются.

4. После выравнивания порядков мантиссы чисел можно складывать (вычитать) в зависимости от требуемой операции. Операция вычитания заменяется операцией сложения в соответствии с данными табл. 2.3. Действия над слагаемыми производятся в ОК или ДК по общим правилам.

5. Порядок результата берется равным большему порядку.

6. Если мантисса результата не нормализована, то осуществляются нормализация и коррекция значений порядка.

Пример 2.13. Сложить два числа А10=+1.375; B10=-0.625.

А2=+1.011=0: 1011*101; B2=-0.101=-0:101*100.

В нормализованном виде эти числа будут иметь вид:

1. Вычитаем порядки ?p=p1-p2=1-0=1. В машине эта операция требует операции сложения с преобразованием порядка чисел в дополнительный код:

Определяем, что ?р? 0.

2. Порядок первого числа больше порядка второго числа на единицу. Требуется выравнивание порядков.

3. Для выравнивания порядков необходимо второе число сдвинуть вправо на один разряд.

[B2]исх=0: 0 1: 101

после сдвига

[B2]п=0: 11:0101

[mB]дк= 1: 1011

4. Складываем мантиссы.

Мантисса числа С - положительная.

5. Порядок числа С равен порядку числа с большим порядком, т.е. р = +1.

2]п=0: 1 0: 0110.

Видно, что мантисса результата не нормализована, так как старшая цифра мантиссы равна нулю.

6. Нормализуем результат путем сдвига мантиссы на один разряд влево и соответственно вычитаем из значения порядка единицу:

Умножение (деление). Операция умножения (деления) чисел с плавающей точкой также требует разных действий над порядками и мантиссами. Алгоритмы этих операций выполняются в следующей последовательности.

1. При умножении (делении) порядки складываются (вычитаются) так, как это делается над числами с фиксированной точкой.

2. При умножении (делении) мантиссы перемножаются (делятся).

3. Знаки произведения (частного) формируются путем сложения знаковых разрядов сомножителей (делимого и делителя). Возможные переносы из знакового разряда игнорируются.

 

 
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров