Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Зимняя И.А. КЛЮЧЕВЫЕ КОМПЕТЕНТНОСТИ как результативно-целевая основа компетентностного подхода в образовании (3)
(Статьи)

Значок файла Кашкин В.Б. Введение в теорию коммуникации: Учеб. пособие. – Воронеж: Изд-во ВГТУ, 2000. – 175 с. (4)
(Книги)

Значок файла ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ КОМПЕТЕНТНОСТНОГО ПОДХОДА: НОВЫЕ СТАНДАРТЫ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ (4)
(Статьи)

Значок файла Клуб общения как форма развития коммуникативной компетенции в школе I вида (10)
(Рефераты)

Значок файла П.П. Гайденко. ИСТОРИЯ ГРЕЧЕСКОЙ ФИЛОСОФИИ В ЕЕ СВЯЗИ С НАУКОЙ (11)
(Статьи)

Значок файла Второй Российский культурологический конгресс с международным участием «Культурное многообразие: от прошлого к будущему»: Программа. Тезисы докладов и сообщений. — Санкт-Петербург: ЭЙДОС, АСТЕРИОН, 2008. — 560 с. (13)
(Статьи)

Значок файла М.В. СОКОЛОВА Историческая память в контексте междисциплинарных исследований (14)
(Статьи)

Арифметические операции над двоичными числами с плавающей точкой

В современных ЭВМ числа с плавающей точкой хранятся в памяти машин, имея мантиссу и порядок (характеристику) в прямом коде и нормализованном виде. Все арифметические действия над этими числами выполняются так же, как это делается с ними, если они представлены в полулогарифмической форме (мантисса и десятичный порядок) в десятичной системе счисления. Порядки и мантиссы обрабатываются раздельно.

Сложение (вычитание). Операция сложения (вычитания) производится в следующей последовательности.

1. Сравниваются порядки (характеристики) исходных чисел путем их вычитания р=р1-р2. При выполнении этой операции определяется, одинаковый ли порядок имеют исходные слагаемые.

2. Если разность порядков равна нулю, то это значит, что одноименные разряды мантисс имеют одинаковые веса (двоичный порядок). В противном случае должно проводиться выравнивание порядков.

3. Для выравнивания порядков число с меньшим порядком сдвигается вправо на разницу порядков Ар. Младшие выталкиваемые разряды при этом теряются.

4. После выравнивания порядков мантиссы чисел можно складывать (вычитать) в зависимости от требуемой операции. Операция вычитания заменяется операцией сложения в соответствии с данными табл. 2.3. Действия над слагаемыми производятся в ОК или ДК по общим правилам.

5. Порядок результата берется равным большему порядку.

6. Если мантисса результата не нормализована, то осуществляются нормализация и коррекция значений порядка.

Пример 2.13. Сложить два числа А10=+1.375; B10=-0.625.

А2=+1.011=0: 1011*101; B2=-0.101=-0:101*100.

В нормализованном виде эти числа будут иметь вид:

1. Вычитаем порядки ?p=p1-p2=1-0=1. В машине эта операция требует операции сложения с преобразованием порядка чисел в дополнительный код:

Определяем, что ?р? 0.

2. Порядок первого числа больше порядка второго числа на единицу. Требуется выравнивание порядков.

3. Для выравнивания порядков необходимо второе число сдвинуть вправо на один разряд.

[B2]исх=0: 0 1: 101

после сдвига

[B2]п=0: 11:0101

[mB]дк= 1: 1011

4. Складываем мантиссы.

Мантисса числа С - положительная.

5. Порядок числа С равен порядку числа с большим порядком, т.е. р = +1.

2]п=0: 1 0: 0110.

Видно, что мантисса результата не нормализована, так как старшая цифра мантиссы равна нулю.

6. Нормализуем результат путем сдвига мантиссы на один разряд влево и соответственно вычитаем из значения порядка единицу:

Умножение (деление). Операция умножения (деления) чисел с плавающей точкой также требует разных действий над порядками и мантиссами. Алгоритмы этих операций выполняются в следующей последовательности.

1. При умножении (делении) порядки складываются (вычитаются) так, как это делается над числами с фиксированной точкой.

2. При умножении (делении) мантиссы перемножаются (делятся).

3. Знаки произведения (частного) формируются путем сложения знаковых разрядов сомножителей (делимого и делителя). Возможные переносы из знакового разряда игнорируются.

 
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров