Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Выемочно-погрузочные работы и транспортирование горной массы карьеров: Лабораторный практикум / Сост. Б.П. Караваев; ГОУ ВПО «СибГИУ». – 2003 (6)
(Методические материалы)

Значок файла Проект кислородно-конвертерного цеха. Метод. указ. / Сост.: И.П. Герасименко, В.А. Дорошенко: ГОУ ВПО «СибГИУ». – Новокузнецк, 2004. – 25 с. (6)
(Методические материалы)

Значок файла Веревкин Г.И. Программа и методические указания по преддипломной практике. Методические указания. СибГИУ. – Новокузнецк, 2002. – 14 с. (3)
(Методические материалы)

Значок файла Программа и методические указания по производственной специальной практике / Сост.: И.П. Герасименко, В.А. Дорошенко: СибГИУ. – Новокузнецк, 2004. – 19 с. (4)
(Методические материалы)

Значок файла Определение величины опрокидывающего момента кон-вертера (4)
(Методические материалы)

Значок файла Обработка экспериментальных данных при многократном измерении с обеспечением требуемой точности. Метод. указ. к лабораторной работе по дисциплине «Метрология, стандартизация и сертификация» / Сост.: В.А. Дорошенко, И.П. Герасименко: ГОУ ВПО «СибГИУ». – Новокузнецк, 2004. – 20 с. (9)
(Методические материалы)

Значок файла Методические указания по дипломному и курсовому проектированию к расчету материального баланса кислородно-конвертерной плавки при переделе фосфористого чугуна с промежуточным удалением шлака / Сост.: В.А._Дорошенко, И.П _Герасименко: ГОУ ВПО «СибГИУ». – Новокузнецк, 2003. – с. (10)
(Методические материалы)

Технолигии решения моделей транспортных задач

МS Ехсеl позволяет решать транспортные задачи различной степени сложности, не требуя от пользователя знаний математического программирования. В  моделях транспортных задач, которые образуют наиболее широкий класс задач линейного программирования, производится поиск оптимального критерия плана перевозок грузов из пункта отправления в заданные пункты назначения.

Исторически методы линейного программирования начали развиваться именно из анализа транспортных задач. Изучение транспортных задач имеет исключительное практическое значение, так как позволяет снизить транспортные расходы предприятия на 10 – 30 %,  и решить большое количество прикладных задач, описываемых математическими моделями, подобно моделям транспортных задач.

Методы линейного программирования делятся на две группы: универсальные и специальные.

С помощью универсальных методов можно решить любую задачу линейного программирования, в том числе и транспортную.

Специальные методы применяются для решения отдельных классов задач линейного программирования. Они проще универсальных, но применяются не для всех задач. К специальным методам относятся методы решения транспортной задачи, которые учитывают специфику ее ограничений:

? все ограничения заданы в виде уравнений;

? каждое неизвестное входит лишь в два уравнения;

? коэффициенты при неизвестных - единицы.

Среди этих методов наиболее известны:

E распределительный метод;

E модифицированный распределительный метод (или метод потенциалов), предложенный Л. В. Канторовичем и М. К. Гавуриним, позже, независимо от них, Дж. Данцигом;

E венгерский метод, предложенный Э. Эгервари и усовершенствованный X. Куном для решения частного случая транспортной задачи: задачи о назначении (или о выборе), а позднее обобщенный Дж. Манкресом на транспортную задачу общего вида;

E метод приложений А. Л. Лурье;

E метод дифференциальных рент А. Л. Брудно.

Различают два типа транспортных задач: по критерию стоимости и по критерию времени. На практике в большинстве случаев критерий стоимости является главным, определяющим эффективность плана перевозок.

Если речь идет о перевозке скоропортящихся продуктов, о подвозе грузов к месту техногенных и естественных катастроф, о подвозе боеприпасов к месту боевых действий, то на первый план выдвигается не стоимость перевозок, а время, на протяжении которого требуемые перевозки будут завершены.

Простейшая формулировка транспортной задачи по критерию стоимости звучит: в т пунктах отправления находятся, соответственно, аьа2 , ... ат единиц однородного груза (ресурсы), которые должны быть доставленный в п заданных пунктов назначения (потребление), соответственно, в количествах в1, в2, ... вn единиц. Пусть стоимость перевозки единицы груза из і-го пункта отправления в j-й пункт назначения равняется Gij, а соответствующее количество единиц перевезенного груза равно xij(i=1,.2, ...m;  j=1, 2, ...n).

Требуется составить такой план перевозок, при котором их общая стоимость окажется минимальной. Матрицы, образованные значениями переменных xij и коэффициентами Gij, называются планом перевозок(xij) и матрицей транспортных расходов (Gij). Различают закрытые и открытые математические модели транспортной задачи.

 
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров