Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Неразрушающие методы контроля Ультразвуковая дефектоскопия отливок Методические указания к выполнению практических занятий по курсу «Метрология, стандартизация и сертификация» Специальность «Литейное производство черных и цветных металлов» (110400), специализации (110401) и (110403) (6)
(Методические материалы)

Значок файла Муфта включения с поворотной шпонкой кривошипного пресса: Метод. указ. / Сост. В.А. Воскресенский, СибГИУ. - Новокуз-нецк, 2004. - 4 с (7)
(Методические материалы)

Значок файла Материальный и тепловой баланс ваграночной плавки. Методические указания /Составители: Н. И. Таран, Н. И. Швидков. СибГИУ – Новокузнецк, 2004. – 30с (9)
(Методические материалы)

Значок файла Изучение конструкции и работы лабораторного прокатного стана дуо «200» :Метод. указ. / Сост.: В.А. Воскресенский, В.В. Почетуха: ГОУ ВПО «СибГИУ». - Новокузнецк, 2003. - 8 с (8)
(Методические материалы)

Значок файла Дипломное проектирование: Метод. указ. / Сост.: И.К.Коротких, А.А.Усольцев, А.И.Куценко: СибГИУ - Новокузнецк, 2004- 21 с (8)
(Методические материалы)

Значок файла Влияние времени перемешивания смеси на ее прочность в сыром состоянии и газопроницаемость: метод. указ./ Сост.: Климов В.Я. – СибГИУ: Новокузнецк, 2004. – 8 с. (8)
(Методические материалы)

Значок файла Вероятностно-статистический анализ эксперимента: Метод. указ. / Сост.: О.Г. Приходько: ГОУ ВПО «СибГИУ». – Новокузнецк. 2004. – 18 с., ил. (8)
(Методические материалы)


Заказ научной авторской работы

Построение нейронной сети для определения кредитоспособности заемщика

Для построения нейронной сети необходимо разработать ее топологию, определить механизм обучения и процедуру тестирования. Кроме того, для обучения нужны входные данные – выборка компаний с достоверной финансовой отчетностью и рассчитанные на ее основе коэффициенты.

На основании анализа задачи было принято решение остановиться на модели трехслойного персептрона и алгоритме обратного распространения в качестве обучающего.

Этот тип нейронных сетей довольно хорошо исследован и описан в научной литературе. Он был предложен в работе Румельхарта и подробно обсуждается почти во всех учебниках по нейронным сетям. Каждый элемент сети строит взвешенную сумму своих входов с поправкой в виде слагаемого и затем пропускает эту величину активации через передаточную функцию, получая, таким образом, выходное значение этого элемента. Элементы организованы в послойную топологию с прямой передачей сигнала. Такую сеть легко можно интерпретировать как модель вход-выход, в которой веса и пороговые значения (смещения) являются свободными параметрами модели. Сеть может моделировать функцию практически любой степени сложности, причем число слоев и число элементов в каждом слое определяют сложность функции. Определение числа промежуточных слоев и числа элементов в них является важным вопросом при конструировании многослойных нейронных сетей. Количество входных и выходных элементов определяется условиями задачи.

Использован самый известный вариант алгоритма обучения нейронной сети – т.н. алгоритм обратного распространения.

В алгоритме обратного распространения вычисляется вектор градиента поверхности ошибок. Этот вектор указывает направление кратчайшего спуска по поверхности из данной точки, поэтому если мы «немного» продвинемся по нему, ошибка уменьшится. Последовательность таких шагов (замедляющаяся

по мере приближения к дну), в конце концов, приведет к минимуму того или иного типа. Определенную трудность здесь представляет вопрос о том, какую нужно брать длину шагов.

При большой длине шага сходимость будет более быстрой, но имеется опасность «перепрыгнуть» через решение или уйти в неправильном направлении. Классическим примером такого явления при обучении нейронной сети является ситуация, когда алгоритм очень медленно продвигается по узкому оврагу с крутыми склонами, прыгая с одной его стороны на другую.

Напротив, при маленьком шаге, вероятно, будет схвачено верное направление, однако при этом потребуется очень много итераций. На практике величина шага берется пропорциональной крутизне склона (так что алгоритм замедляет ход вблизи минимума) с некоторой константой, которая называется скоростью обучения. Правильный выбор скорости обучения зависит от конкретной задачи и обычно осуществляется опытным путем; эта константа может также зависеть от времени, уменьшаясь по мере продвижения алгоритма.

Система для принятия решений в сфере кредитования работает следующим образом.

Лицо, желающее получить кредит (потенциальный заемщик), например физическое лицо, заполняет установленную форму заявки, отвечая на имеющиеся в ней вопросы. Ответы на вопросы могут быть представлены на бумажном носителе или непосредственно в электронном виде. В первом случае они могут быть переведены в электронный вид либо с помощью сканера, либо путем ввода через клавиатуру. Заполненное заявление может также поступить в систему из удаленного источника (компьютера) по каналу связи (не показано), например сети Интернет.

После того как данные, соответствующие заявке на выдачу кредита, включающие ответы на вопросы, представленные в бланке заявки, поступают в устройство ввода данных и распознаются им как таковые, устройство ввода данных передает их в устройство присвоения кодов. На основании таблицы соответствия, хранящейся в устройстве присвоения кодов, каждому ответу на вопрос в зависимости от варианта ответа присваивают определенный код, представляющий собой целое число, и упорядочивают полученную последовательность чисел согласно их значимости, исходя из установленных из практического опыта предпочтений.

Для принятия решения о выдаче кредита и определения величины кредитного лимита, который может быть предоставлен потенциальному заемщику, заполнившему заявку, чьи ответы на вопросы поступили в систему, в устройство обработки данных, помимо данных, относящихся к ответам потенциального заемщика на вопросы заявки, передают данные, соответствующие возможному значению кредитного лимита, данные, характеризующие кредитный рейтинг потенциального заемщика, данные, соответствующие матрице А весовых коэффициентов, а также данные, соответствующие элементам первого В и второго С векторов весовых коэффициентов. Для каждой вновь введенной заявки в устройстве обработки данных формируется первый вектор Х данных, элементы которого представляют собой коды выбранных вариантов ответов на вопросы плюс кредитный рейтинг, плюс кредитный лимит. Следовательно, общая размерность вектора Х данных равна фиксированному значению N, например 100. В то же время данные, относящиеся к весовым коэффициентам, передаются в устройство обработки данных периодически по мере накопления в базе данных значимого объема новой информации.

При поступлении команды на расчет в устройство расчета кредитного лимита данное устройство определяет значение параметра, характеризующего кредитный лимит, следующим образом. В случае, если в отношении данной заявки в устройство расчета кредитного лимита впервые поступает команда на расчет, устройство расчета кредитного лимита передает в устройство обработки данных максимально возможное значение кредитного лимита. В случае поступления в отношении одной и той же заявки на выдачу кредита подобной команды второй и более раз устройство 8 расчета кредитного лимита каждый раз уменьшает величину возможного кредитного лимита на заданное значение (при этом последнее может меняться в зависимости от количества поступивших команд, касающихся одной и той же заявки), и передает в устройство обработки данных новое значение. Количество значений кредитного лимита, которые могут быть переданы в устройство обработки данных в отношении одной заявки, ограничено.

При поступлении в устройство расчета кредитного рейтинга команды из устройства обработки данных, включающей в себя запрос о кредитном рейтинге конкретного лица, заполнившего данную заявку, с указанием идентификатора этого лица, устройство расчета кредитного рейтинга формирует запрос на поиск данных, соответствующих данному лицу в базе данных, в которой хранятся сведения о заемщиках и их кредитные истории, и передает этот запрос в устройство хранения данных. В устройстве хранения данных на основании этого запроса осуществляют поиск соответствующих данных в базе данных. В случае, если запрашиваемые данные обнаружены, т.е. сведения о лице, заполнившем заявку, имеются в базе данных, что означает, что данное лицо уже получало кредит и у него имеется кредитная история, данные, характеризующие кредитную историю этого лица, передают в устройство расчета кредитного рейтинга. На основании этих данных в устройстве расчета кредитного рейтинга рассчитывают значение параметра. В обратном случае данному параметру присваивают определенное значение, например нулевое, что означает, что данный потенциальный заемщик не имеет кредитной истории.

 

Данные, соответствующие рассчитанному значению параметра, характеризующего кредитный рейтинг конкретного потенциального заемщика, передают в устройство обработки данных.

Устройство расчета весовых коэффициентов периодически формирует квадратную матрицу А весовых коэффициентов, размерность которой в рассматриваемом примере равна 100•100, первый вектор В весовых коэффициентов и второй вектор С весовых коэффициентов, причем размерность первого и второго векторов В и С весовых коэффициентов в данном примере равна 100. Значения всех весовых коэффициентов не зависят от ответов на вопросы, содержащиеся в конкретной заявке; они определяются исходя из совокупности всех заявок. Физический смысл весовых коэффициентов - это отражение в форме, пригодной для нейросетевой интерпретации, определенной статистической закономерности, заданной набором записей в базе данных и отражающей статистическую взаимосвязь параметров того или иного заемщика и его кредитной истории. (Пример: лица с цензом оседлости свыше 5 лет, как правило, имеют положительную кредитную историю; следовательно, формирование векторов и матрицы должно производиться таким образом, чтобы при нейросетевой обработке лица, имеющие ценз оседлости менее 5 лет, получали отказ в кредите.) Для расчета значений весовых коэффициентов считывают из базы данных данные, соответствующие заявкам заемщиков и их кредитным историям, и передают их в устройство расчета весовых коэффициентов. Значения весовых коэффициентов рассчитывают, используя известные статистические методы, формируют матрицу А, вектор В и вектор С, несущие информацию о статистической связи параметров клиентов и их кредитных историй, и периодически передают данные, соответствующие элементам матрицы А, элементам векторов В и С, в устройство обработки данных. Значения элементов матрицы А, элементов векторов В и С зависят от множества характеризующих заемщиков данных, хранящихся в базе данных. Если это множество не менялось, то значения также остаются неизменными.

Значения элементов матрицы А, элементов векторов В и С изменятся только в случае, если в базу данных будут введены новые сведения или исключены старые. Поэтому расчет значений весовых коэффициентов может осуществляться только по мере поступления в базу данных новой информации и, следовательно, обновление векторов будет производиться после сохранения в базе данных новой порции заявок, например, раз в день.
После того как в устройство обработки данных из устройства расчета кредитного лимита, из устройства расчета кредитного рейтинга и из устройства расчета весовых коэффициентов поступят запрашиваемые данные, указанное устройство выполняет следующие действия:

а) вычисляет второй вектор Z1 данных, равный произведению матрицы А на вектор Х данных
Z1=A•X;

б) вычисляет третий вектор Z2 данных, равный сумме второго вектора Z1 данных и первого вектора В весовых коэффициентов
Z2=Z1+В;

в) вычисляет четвертый вектор Z3 данных, все элементы которого равны +1 либо -1 в зависимости от того, какой знак имеет соответствующий элемент третьего вектора Z2 данных, т.е. i-й элемент Z3 (i) четвертого вектора данных определяется как Z3 (i)=sign(Z2 (i))=1, если Z2 (i)>0, Z3 (i)=sign(Z2 (i))=-1 в противном случае, где i=1, 2,..., N.

Этапы (а)-(в) описывают работу первого (промежуточного) слоя нейросети; при этом вектор Z3, данных есть результат обработки первого вектора Х данных этим слоем нейронов. Компоненты вектора Z3 данных, равные 1, соответствуют активированным нейронам, а компоненты, равные -1, соответствуют не активированным нейронам. Физически это означает, что принимается набор частных кредитных решений в свете того или иного критерия (материальное положение клиента, социальная стабильность и т.д.).
Выход каждого нейрона - это частное кредитное решение в свете какого-то одного критерия.

г) вычисляет скаляр z4, который представляет собой линейную комбинацию элементов четвертого вектора Z3 данных, взятых с весовыми коэффициентами, являющимися элементами второго вектора С весовых коэффициентов, т.е. z4= Z3•С, где Т - символ транспонирования,

д) вычисляет скаляр z5= z4+d, где d - пороговое значение, значение (в данном примере d= 0).

е) Значение z5 передается в устройство 6 сравнения, в котором вычисляется знаковая функция Y, равная +1 либо -1 в зависимости от того, какой знак имеет скаляр z5(если z5 равно нулю, то знаковой функции у присваивается значение -1), т.е.: Y=sign(z5)=1, если z5>1, Y=sign(z5)=-1 в противном случае.

Этапы (г)-(е) описывают работу второго (выходного) слоя нейросети, состоящего из одного нейрона; знаковая функция Y есть результат работы данного слоя или окончательное кредитное решение, принятое на основе обобщения частных решений, сформированных нейронами предыдущего слоя. Обобщение осуществляется путем суммирования принятых частных решений с весовыми коэффициентами, отражающими значимость того или иного критерия принятия решения в кредитной политике Банка (что важнее для Банка: материальное положение потенциального заемщика, его социальная стабильность или иные критерии).

     Ниже Вы можете заказать выполнение научной работы. Располагая значительным штатом авторов в технических и гуманитарных областях наук, мы подберем Вам профессионального специалиста, который выполнит работу грамотно и в срок.


* поля отмеченные звёздочкой, обязательны для заполнения!

Тема работы:*
Вид работы:
контрольная
реферат
отчет по практике
курсовая
диплом
магистерская диссертация
кандидатская диссертация
докторская диссертация
другое

Дата выполнения:*
Комментарии к заказу:
Ваше имя:*
Ваш Е-mail (указывайте очень внимательно):*
Ваш телефон (с кодом города):

Впишите проверочный код:*    
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров