Заказ работы

Заказать
Каталог тем

Заказ научной авторской работы

Две особенности метода Монте-Карло

Первая особенность метода - простая структура вычислительного алгоритма.

Вторая осо­бенность метода - погрешность вычислений, как правило, пропорциональна D/N2, где D - неко­торая постоянная, N - число испытаний. Отсюда видно, что для того, чтобы уменьшить по­грешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т. е. объем работы) в 100 раз.

Ясно, что добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат ну­жен с небольшой точностью (5-10%). Способ применения метода Монте-Карло по идее доволь­но прост. Чтобы получить искусственную случайную выборку из совокупности величин, опи­сываемой некоторой функцией распределения вероятностей, следует:

1. Построить график или таблицу интегральной функции распределения на основе ряда чи­сел, отражающего исследуемый процесс (а не на основе ряда случайных чисел), причем значе­ния случайной переменной процесса откладываются по оси абсцисс (х), а значения вероятности (от 0 до 1) - по оси ординат (у).

2.С помощью генератора случайных чисел выбрать случайное десятичное число в преде­лах от 0 до 1 (с требуемым числом разрядов).

3. Провести горизонтальную прямую от точки на оси ординат соответствующей выбран­ному случайному числу, до пересечения с кривой распределения вероятностей.

4.Опустить из этой точки пересечения перпендикуляр на ось абсцисс.

5.Записать полученное значение х. Далее оно принимается как выборочное значение.

б.Повторить шаги 2-5 для всех требуемых случайных переменных, следуя тому порядку, в котором они были записаны. Общий смысл легко понять с помощью простого примера: количе­ство звонков на телефонную станцию в течение 1 минуты соответствует следующему распреде­лению:

Кол - во звонков    Вероятность   Кумулятивная вероятность
О                          0,10                         0,10

1                           0,40                          0,50

2                           0,30                         0,80

3                           0,15                          0,95

4                           0,05                          1,00

Предположим, что мы хотим провести мысленный эксперимент для пяти периодов времени.

Построим график распределения кумулятивной вероятности. С помощью генератора слу­чайных чисел получим пять чисел, каждое из которых используем для определения количества звонков в данном интервале времени.

Период времени    Случайное число   Количество звонков

 

1                                                                                0,09                              О

 

2                                                                                0,54                              2

 

3                                                                                0,42                              1

 

4                                                                                0,86                             3

5                                                                                0,23                             1

 

Взяв еще несколько таких выборок, можно убедиться в том, что если используемые числа действительно распределены равномерно, то каждое из значений исследуемой величины будет появляться с такой же частотой, как ирреальном мире», и мы получим результаты, типичные для поведения исследуемой системы.

Вернемся к примеру. Для расчета нам нужно было выбирать случайные

точки в единичном квадрате. Как это сделать физически?

Представим такой эксперимент. Рис.1. (в увеличенном масштабе) с фигурой

S и квадратом  повешен на стену в качестве мишени. Стрелок, находившийся

на некотором расстоянии от стены, стреляет N раз, целясь в центр квадрата.

Конечно, все пули не будут ложиться точно в центр: они пробьют на мишени N случайных точек. Можно ли по этим точкам оценить площадь  S.

     Результат такого опыта показан на рис. 2.(см. Приложение 2)

 

 Ясно, что при высокой квалификации стрелка результат опыта будет очень плохим, так как почти все пули будут ложиться вблизи центра и попадут в S.

Нетрудно понять, что наш метод вычисления площади будет справедлив только тогда, когда случайные точки будут не просто «случайными», а еще и «равномерно разбросанными» по всему квадрату.

 

В задачах исследования операций метод Монте-Карло применяется в

трех основных ролях:

1)      при моделировании сложных, комплексных операций, где

присутствует много взаимодействующих случайных факторов;

2)      при проверке применимости более простых, аналитических

      методов и выяснении условий их применимости;

3)

     Ниже Вы можете заказать выполнение научной работы. Располагая значительным штатом авторов в технических и гуманитарных областях наук, мы подберем Вам профессионального специалиста, который выполнит работу грамотно и в срок.


* поля отмеченные звёздочкой, обязательны для заполнения!

Тема работы:*
Вид работы:
контрольная
реферат
отчет по практике
курсовая
диплом
магистерская диссертация
кандидатская диссертация
докторская диссертация
другое

Дата выполнения:*
Комментарии к заказу:
Ваше имя:*
Ваш Е-mail (указывайте очень внимательно):*
Ваш телефон (с кодом города):

Впишите проверочный код:*    
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров