Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Неразрушающие методы контроля Ультразвуковая дефектоскопия отливок Методические указания к выполнению практических занятий по курсу «Метрология, стандартизация и сертификация» Специальность «Литейное производство черных и цветных металлов» (110400), специализации (110401) и (110403) (6)
(Методические материалы)

Значок файла Муфта включения с поворотной шпонкой кривошипного пресса: Метод. указ. / Сост. В.А. Воскресенский, СибГИУ. - Новокуз-нецк, 2004. - 4 с (7)
(Методические материалы)

Значок файла Материальный и тепловой баланс ваграночной плавки. Методические указания /Составители: Н. И. Таран, Н. И. Швидков. СибГИУ – Новокузнецк, 2004. – 30с (9)
(Методические материалы)

Значок файла Изучение конструкции и работы лабораторного прокатного стана дуо «200» :Метод. указ. / Сост.: В.А. Воскресенский, В.В. Почетуха: ГОУ ВПО «СибГИУ». - Новокузнецк, 2003. - 8 с (10)
(Методические материалы)

Значок файла Дипломное проектирование: Метод. указ. / Сост.: И.К.Коротких, А.А.Усольцев, А.И.Куценко: СибГИУ - Новокузнецк, 2004- 21 с (8)
(Методические материалы)

Значок файла Влияние времени перемешивания смеси на ее прочность в сыром состоянии и газопроницаемость: метод. указ./ Сост.: Климов В.Я. – СибГИУ: Новокузнецк, 2004. – 8 с. (8)
(Методические материалы)

Значок файла Вероятностно-статистический анализ эксперимента: Метод. указ. / Сост.: О.Г. Приходько: ГОУ ВПО «СибГИУ». – Новокузнецк. 2004. – 18 с., ил. (8)
(Методические материалы)


Заказ научной авторской работы

Многопродуктовая статическая модель с ограничениями складских помещений

Эта модель предназначена для систем управления запасами, включающие n>1 видов продукции, которая хранится на одном складе ограниченной площади. Данное условие определяет взаимосвязь между различными видами продукции может быть включено в модель как ограничение. Данное ограничение реально существует особенно при больших потребностях в запасах, как это существует на металлургических комбинатах.

Пусть А – максимально допустимая площадь складского помещения для n видов продукции; предположим, что площадь, необходимая для хранения единицы продукции i-го вида, то ограничение на потребность в складском помещении принимают вид:

 

.                                                  (3.9)

 

Допустим, что запас продукции каждого вида пополняется мгновенно и скидки цен отсутствуют. Предположим далее, что дефицит не допускается.

Пусть bi, Ki и hi – интенсивность спроса, затраты на оформление заказа и затраты на хранение единицы продукции в единицу времени для i-го вида продукции соответственно. Общие затраты по продукции каждого вида, по существу, будут теми же, что и в случае эквивалентной однопродуктовой модели. Таким образом, рассматриваемая задача имеет вид минимизировать

при для всех i. (3.10)

Общее решение этой задачи находится методом множителей Лагранжа. Однако, прежде чем применять этот метод, необходимо установить, действуют ли указанное ограничение, проверив выполнимость ограничений на площадь склада для решения  неограниченной задачи. Если ограничение выполняется, то оно избыточно, и им можно пренебречь.

Ограничение действует, если оно не выполняется для значений . В таком случае нужно найти новое оптимальное значение yi, удовлетворяющее ограничению на площадь склада в виде равенства. Этот результат достигается построением функции Лагранжа вида:

 

 ,   (3.11)

 

где l(<0) – множитель Лагранжа.

Оптимальные значения yi и l можно найти, приравняв нулю соответствующие частные производные, что дает:

 

               ,                                                                  (3.12)

               .                                                                            (3.13)

 

Из второго уравнения следует, что значение  должно удовлетворять ограничению на площадь склада в виде равенства. Из первого уравнения следует, что

 

 .                                                                          (3.14)

 

Заметим, что  зависит от оптимального значения l* множителя l. Кроме того, при l*=0 значение  является решением задачи без ограничения.

Значение l*  можно найти методом систематических проб и ошибок. Так как по определению в поставленной выше задаче минимизации l<0, то при последовательной проверке отрицательных значений l найденное значение l* будет одновременно определять значения y*, которые удовлетворяют заданному ограничению в виде равенства. Таким образом, в результате определения l*  автоматически получаются значения y* .

 

 

     Ниже Вы можете заказать выполнение научной работы. Располагая значительным штатом авторов в технических и гуманитарных областях наук, мы подберем Вам профессионального специалиста, который выполнит работу грамотно и в срок.


* поля отмеченные звёздочкой, обязательны для заполнения!

Тема работы:*
Вид работы:
контрольная
реферат
отчет по практике
курсовая
диплом
магистерская диссертация
кандидатская диссертация
докторская диссертация
другое

Дата выполнения:*
Комментарии к заказу:
Ваше имя:*
Ваш Е-mail (указывайте очень внимательно):*
Ваш телефон (с кодом города):

Впишите проверочный код:*    
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров