Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Методические указания к научно-исследовательской работе студентов по курсу “Социология”. Ч. 1/ Сост.: Е. А. Сафонова: СибГИУ. - Новокузнецк, 2003. – 45 (2)
(Методические материалы)

Значок файла Методические рекомендации для практических занятий по психологии: Метод. указ./ Сост.: С. Г. Колесов: СибГИУ. – Новокузнецк, 2002. – 29 (2)
(Методические материалы)

Значок файла Методические указания по проведению производственной практики (первой). Специальность «Промышленное и гражданское строительство» (290300) (2)
(Методические материалы)

Значок файла Контроль качества бетона. Определение прочности бетона неразру-шающими методами. Методические указания к выполнению лабора-торных работ по курсу «Технология строительных процессов». Специ-альность «Промышленное и гражданское строительство» (290300) (2)
(Методические материалы)

Значок файла Динамика. Тема 6. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ: Расч. прак./ Сост.: Г.Т. Баранова, Н.И. Михайленко: СибГИУ.-Новокузнецк, 2003.- с (2)
(Методические материалы)

Значок файла Семенихин А.Я. С 30 Технология подземных горных работ: Учебное пособие / А.Я. Семенихин, В.И. Любогощев, Ю.А. Златицкая. – Новокузнецк: СибГИУ, 2003. - 91 с (19)
(Методические материалы)

Значок файла Огнев С.П., Ляховец М.В. Основы теории управления: методические указания. – Новокузнецк: ГОУ ВПО «СибГИУ», 2004. – 45 с (15)
(Методические материалы)


Заказ научной авторской работы

Рациональный штандорт промышленного предприятия В. Лаунхардта

Главное открытие немецкого ученого В. Лаунхардта,основная работа которого была опубликована в 1882 г., — метод нахождения пункта оптимального размещения отдельного промышленного предприятия относительно источников сырья рынка сбыта продукции.

Решающим фактором размещения производства у В. Лаунхардта, так же как и у Й. Тюнена, являются транспортные издержки. Производственные затраты принимаются равными для всех точек исследуемой территории. Точка оптимального размещения предприятия находится в зависимости от весовых соотношений перевозимых грузов и расстояний. Для решения этой задачи В. Лаунхардт разработал метод весового (или локационного) треугольника (рис. 3.2).

Пусть требуется найти пункт размещения нового металлургического завода. Известны пункт добычи железной руды — точка A пункт добычи угля — точка В и пункт потребления металла — точка С (рис.3.2). Транспортный тариф равен t (на 1 т/км). Расходы руды на выплавку 1т металла составляют: а; расход угля — b. Известны также расстояния между пунктами (стороны локационного треугольника): АС = S1; ВС = S2; АВ = S3.

Возможным пунктом размещения металлургического завода может быть в принципе каждая из трех точек размещения источников руды, угля и потребителя металла. В этих случаях суммарные затраты, связанные с перевозкой всех необходимых грузов для потребления 1т металла, будут равны:

(bS3 + S1) t — при размещении завода в точке А;

(aS3 + S2) t — при размещении завода в точке В;

(aS1 + S2) t — при размещении завода в точке С.

Рис. 3.2. Локационный треугольник В. Лаунхардта

Наилучшим пунктом размещения завода из рассмотренных трех будет тот, в котором транспортные затраты минимальны. Однако искомый пункт размещения может не совпадать ни с одной из вершин локационного треугольника, а находиться внутри него в некоторой точке М.

Расстояние от внутренней точки М до вершин треугольника составляют: AM = r1 ВМ = r2 СМ = r3. Тогда транспортные издержки при размещении металлургического завода в точке М будут равны Т = (ar1+ br2 + + r3) t. Выполнение требования Т ? min дает точку оптимального местоположения предприятия.

Данная задача имеет геометрическое и механическое решения. Геометрический метод нахождения точки размещения в том, что на каждой из сторон локационного треугольника строится треугольник, подобный весовому (стороны которого относятся как а : b :1). Затем вокруг построенных таким образом треугольников описываются окружности, точка пересечения которых и является точкой минимума транспортных издержек. Этот метод применим для случая, когда соотношения расстояний S1, S2, S3 соответствуют свойству треугольника (одна сторона меньше суммы двух других). В противном случае (например когда S1 > S2 + S3) точка минимума транспортных затрат будет совпадать с одной из вершин локационного треугольника.

Механическое решение рассматриваемой задачи основывается на аналогии с методом нахождения точки равновесия сил. При этом веса руды, угля, металла выступают в качестве сил, с которыми притягивают производство соответствующие вершины локационного треугольника. Искомая точка является точкой равновесия трех связанных нитей, проходящих через вершины локационного треугольника. При этом к концам нитей подвешены грузы (Qa,Qb,Qc),пропорциональные a, b, 1. Весовой треугольник В. Лаунхардта — одна из первых в экономической науке физических моделей, используемых для решения теоретических ипрактических задач.

Изложенный метод нахождения оптимального размещения предприятия применим и для большего числа точек (видов сырья) при условии, что они образуют выпуклый многоугольник.

 

 

     Ниже Вы можете заказать выполнение научной работы. Располагая значительным штатом авторов в технических и гуманитарных областях наук, мы подберем Вам профессионального специалиста, который выполнит работу грамотно и в срок.


* поля отмеченные звёздочкой, обязательны для заполнения!

Тема работы:*
Вид работы:
контрольная
реферат
отчет по практике
курсовая
диплом
магистерская диссертация
кандидатская диссертация
докторская диссертация
другое

Дата выполнения:*
Комментарии к заказу:
Ваше имя:*
Ваш Е-mail (указывайте очень внимательно):*
Ваш телефон (с кодом города):

Впишите проверочный код:*    
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров