Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Неразрушающие методы контроля Ультразвуковая дефектоскопия отливок Методические указания к выполнению практических занятий по курсу «Метрология, стандартизация и сертификация» Специальность «Литейное производство черных и цветных металлов» (110400), специализации (110401) и (110403) (4)
(Методические материалы)

Значок файла Муфта включения с поворотной шпонкой кривошипного пресса: Метод. указ. / Сост. В.А. Воскресенский, СибГИУ. - Новокуз-нецк, 2004. - 4 с (6)
(Методические материалы)

Значок файла Материальный и тепловой баланс ваграночной плавки. Методические указания /Составители: Н. И. Таран, Н. И. Швидков. СибГИУ – Новокузнецк, 2004. – 30с (5)
(Методические материалы)

Значок файла Изучение конструкции и работы лабораторного прокатного стана дуо «200» :Метод. указ. / Сост.: В.А. Воскресенский, В.В. Почетуха: ГОУ ВПО «СибГИУ». - Новокузнецк, 2003. - 8 с (6)
(Методические материалы)

Значок файла Дипломное проектирование: Метод. указ. / Сост.: И.К.Коротких, А.А.Усольцев, А.И.Куценко: СибГИУ - Новокузнецк, 2004- 21 с (7)
(Методические материалы)

Значок файла Влияние времени перемешивания смеси на ее прочность в сыром состоянии и газопроницаемость: метод. указ./ Сост.: Климов В.Я. – СибГИУ: Новокузнецк, 2004. – 8 с. (7)
(Методические материалы)

Значок файла Вероятностно-статистический анализ эксперимента: Метод. указ. / Сост.: О.Г. Приходько: ГОУ ВПО «СибГИУ». – Новокузнецк. 2004. – 18 с., ил. (7)
(Методические материалы)


Заказ научной авторской работы

Пример использования экономико-математических методов прогнозирования

Рассмотрим в качестве примеров пространственных прогнозно-аналитических моделей регионального потребления материальных ресурсов две разработанные нами экономико-статистические модели: модель регионального потребления котельно-печного топлива в экономике России и модель регионального потребления котельно-печного топлива на коммунально-бытовые нужды.

Моделирование регионального потребления котельно-печного топлива в экономике России основывалось на анализе взаимосвязей данного показателя с показателями развитая отраслей материального производства в регионах. В качестве независимых переменных модели использовались показатели производства товарной продукции основных топливопотребляющих отраслей промышленности, а также показатели объема строительно-монтажных работ и производства валовой продукции сельского хозяйства. Построение модели осуществлялось с помощью процедуры многошагового регрессионного анализа. В качестве исходного использовалось девятифакторное регрессионное уравнение вида:

ln y = ln a0 + a1*ln x1 + a2*ln x2+a3*ln x3+ a4*ln x4+a5*ln x5+
+a6*ln x6+a7*ln x7+a8*ln x8+a9*ln x9

где y - общий объем потребления котельно-печного топлива в регионе;

а1 - свободный член уравнения регрессии;

а1...а9 - коэффициенты эластичности, каждый из которых показывает средний процент изменения общей величины потребности при изменении значения i-го фактора на 1%;

х1 - объем производства товарной продукции электроэнергетики;

х2 - объем производства товарной продукции черной металлургии;

х3 - объем производства товарной продукции топливной промышленности;

х4 - объем производства товарной продукции промышленности строительных материалов;

х5 - объем производства товарной продукции химической и нефтехимической промышленности;

х6 - объем производства товарной продукции машиностроения и металлообработки;

х7 - объем производства товарной продукции остальных отраслей промышленности;

х8 - объем строительно-монтажных работ;

х9 - объем производства валовой продукции сельского хозяйства.

Результаты проведенного многошагового регрессивного анализа приведены в таблице·1. Как видно из приведенных данных, все коэффициенты регрессии становятся значимыми ухе на второй итерации (после исключения из уравнения фактора х5). В то же время последовательное исключение из уравнения регрессии факторов, имеющих минимальное значение t -критерия, позволяет без существенных потерь в аппроксимирующей способности получить более простые модели, требующие относительно меньшего объема экзогенно задаваемой информации.

Проведенный анализ позволил выделить четыре основных показателя, достаточно полно описывающих общую вариацию зависимой переменной, а именно показателя производства товарной продукции электроэнергетики, черной металлургии, топливной промышленности и промышленности строительных материалов. Существенность данных факторов подтверждается экономическим анализом, так как перечисленные показатели характеризуют развитие четырех наиболее крупных отраслей - потребителей котельно-печного топлива в экономике России.

Таким образом, в результате многошагового регрессионного анализа было получено следующее уравнение:

ln y = 4.9390+0.2152*ln x1+0.1037*ln x2+0.0724*ln x3+0.4585*ln x4

R=0.9441;   R2=0.8913;   S=2.79

где R - множественный коэффициент корреляции;

R2 - коэффициент множественной детерминации;

S - средняя ошибка аппроксимации.

Полученное сравнение имеет достаточно-высокие статистические характеристики, соответствует данным качественного (теоретико-экономического) анализа и является достаточно общим с точки зрения степени детализации используемых независимых переменных. Перечисленные свойства позволяют использовать приведенную форму модели в прогнозно-аналитических расчетах по определению общих объемов потребности в котельно-печной топливе экономики областей, краев и автономных республик России.

Описанная модель позволяет на основе достаточно общих данных определять потребность в котельно-печном топливе по экономике в целом того или иного региона. Для определения ее потребности в материальных ресурсах по различным направлениям их расхода необходимы разработка и использование более детализированных моделей, учитывающих параметры технического л экономического развития отдельных отраслей (сфер) народного хозяйства регионов республики. Примером такой регионально-отраслевой модели может служить разработанная нами модель потребления котельно-печного топлива на коммунально-бытовые нужды областей, краев и автономных республик России.

На первом этапе построения данной модели было осуществлено выделение основных влияющих факторов, отражавших важнейшие закономерности формирования моделируемого показателя. В результате теоретического, корреляционного и регрессионного анализа из большого набора различных факторов, влияющих на уровень регионального потребления котельно-печного топлива на коммунально-бытовые нужды ( y ), были выделены шесть наиболее существеных показателей:

х1е - общая площадь децентрализовано отапливаемого жилого и обобществленного нежилого фонда в регионе;

х1 - общая площадь децентрализовано отапливаемого жилого фонда в регионе;

х2 - средний часовой расход тепловой энергии на отопление 1 кв.м. указанного жилого фонда;

х3 - продолжительность отопительного периода со средней суточной температурой воздуха 8°С и ниже в данной местности, сутки ,

х4·-·разность между расчетной температурой внутреннего воздуха отапливаемых помещений и средней температурой наружного воздуха за отопительный период;

х5 - удельный расход условного топлива на выработку тепла при децентрализованной системе теплоснабжения.

Процесс построения модели заключался в разработке альтернативных вариантов регрессионных уравнений на основе использования различных комбинаций исходного набора факторов и форм связи. Количественный и качественный анализ альтернативных вариантов модели регионального потребления котельно-печного топлива на коммунально-бытовые нужды позволял выделить как наиболее адекватные и отвечающие Целям исследования пять регрессионных уравнений, параметры и статистические характеристики которых приведены в приложении 2.

Полученные уравнения обладают высокими аппроксимирующими свойствами и не противоречат данным качественного (теоретико-экономического) анализа. В то же время приведенные уравнения существенно различаются по своим прогнозно-аналитическим возможностям, Так, уравнения 1-3, хотя и обладают наибольшей точностью описания моделируемого показателя, более приемлемы для краткосрочного прогнозирования, поскольку включают в себя показатель общей площади обобществленного нежилого фонда, значение которого на перспективу не планируется.

Для долгосрочного же прогнозирования наиболее приемлемо уравнение 5:

ln y = -20.1198+0.9245*ln x1+1.3233*ln x2+0.9256ln x3+0.419*ln x4+
+1.3092*ln x5;

R=0.9883;   R2=0.9767;   S=1.18

Данное уравнение обладает более высокой точностью по сравнению с уравнением 4, а главное - позволяет учесть влияние на моделируемый показатель факторов научно-технического прогресса (в качестве независимых переменных, отражающих влияние научно-технического прогресса, в уравнении выступают показатель х2, характеризующий уровень теплотехнической эффективности жилого фонда, и показатель х5, характеризующий степень технического совершенства применяемых теплогенерирующих установок).

 

 

     Ниже Вы можете заказать выполнение научной работы. Располагая значительным штатом авторов в технических и гуманитарных областях наук, мы подберем Вам профессионального специалиста, который выполнит работу грамотно и в срок.


* поля отмеченные звёздочкой, обязательны для заполнения!

Тема работы:*
Вид работы:
контрольная
реферат
отчет по практике
курсовая
диплом
магистерская диссертация
кандидатская диссертация
докторская диссертация
другое

Дата выполнения:*
Комментарии к заказу:
Ваше имя:*
Ваш Е-mail (указывайте очень внимательно):*
Ваш телефон (с кодом города):

Впишите проверочный код:*    
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров