Заказ работы

Заказать
Каталог тем
Каталог бесплатных ресурсов

Определение фенола методом броматометрического титрования

СОДЕРЖАНИЕ

1.     Введение……………………………………………………………...3

2.     Теория броматометрического метода анализа…………………….4

3.     Техника титрования…………………………………………………5

4.     Достоинства и недостатки броматометрического метода………..6

5.     Фенолы……………………………………………………………….7

6.     Определение фенола………………………………………………...8

7.     Список литературы…………………………………………………10

 

 

 

Введение.

       Титриметрический метод анализа основан на изменении количества реагента строго определённой концентрации и известного состава в момент установления точки эквивалентности. Стремясь не пропустить точку эквивалентности, реактив прибавляют постепенно, по каплям. Примером может служить определение количества кислоты титрованием ее щелочью в присутствии индикатора, который способен изменять окраску, если после точки эквивалентности появился даже ничтожный избыток щелочи. Титриметрические методы отличаются высокой точностью и быстротой определения. В отличие от гравиметрических методов, они позволяют последовательно определять несколько компонентов.

      Химические реакции, используемые в методах титриметрии, разнообразны. Все они, однако, относительно быстрые. Реактивы, используемые для титрования, должны быть устойчивы при хранении, к действию света и т.д. Реакцию можно использовать для титрования, если конечная точка титрования без особого труда обнаруживается химическими (с помощью индикатора – вещества способного менять цвет в этой точке) или физическими методами (измеряя силу тока, электродный потенциал и т.д.).

       Довольно часто применяют, например, реакции, продуктом которых является малорастворимое соединение, - осадительное титрование. В качестве индикаторов помимо давно известных могут служить некоторые реагенты, первоначально предложенные для фотометрического определения соответствующих элементов. Так, для определения бария и сульфат-ионов путем осаждения сульфата бария успешно используют реагент нитхромазо, который был синтезирован сначала как фотометрический реагент.

       Более важны для аналитической практики окислительно-восстановительные реакции. Кроме широко применяемых классических окислительно-восстановительных методов – перманганатометрии, броматометрии, цериметрии – предлагаются новые приемы. Методы окислительно-восстановительного титрования получили широкое развитие. Предложен, в частности, новый прием – ванадатометрия, основанный на использовании ванадата аммония в качестве окислителя, индикатором служит фенилантраниловая кислота. Разработан метод меркуроредуктометрии; исследованы окислительно-восстановительные индикаторы, главным образом различные аналоги фенилантраниловой кислоты.

       Быстро развиваются комплексометрические методы титрования, в основу которых положены реакции комплексообразования. Известны они не один десяток лет, но особое значение методы эти получили в послевоенные годы. В 30-40-е годы швейцарский химик Г. Шварценбах показал, что этилендиаминтетрауксусная кислота (ЭДТА) образует с ионами многих металлов устойчивые комплексы  постоянного состава,  причем реакции идут быстро. Под названием «комплексоны» ЭДТА и особенно ее натриевая соль были предложены как реагенты для маскирования ионов металлов и для комплексометрического титрования. Были подобраны индикаторы, в числе первых был описан мурексид и эриохром черный Т.

       В подавляющем большинстве случаев для титрования используют водные растворы. Однако неводное титрование в органических или неводных неорганических растворителях сулит подчас большие возможности. Одна из главных причин – дифференциация свойств различных веществ в таких растворителях. Если, например, две кислоты в воде полностью диссоциированы и титруются одновременно, то в правильно подобранном неводном растворителе их можно титровать раздельно. Общая теория неводного титрования с позиций теории растворов была разработана Н.А.Измайловым. Неводному титрованию посвящено немало работ, особого внимания заслуживает монография А.П. Крешкова  «Кислотно-основное титрование в неводных растворах».

       Титриметрические методы просты и доступны. Пипетки, бюретки, мерные колбы, конические колбы для титрования – вот почти весь немудреный набор оборудования. Однако разработано и разрабатываются много инструментальных методов. Прежде всего это касается фиксации конечной точки титрования: физико-химические и физические методы позволяют делать это объективно. Обычный прием едва ли не в любой лаборатории – потенциометрическое титрование. Развиты и применяются методы амперометрического титрования. Есть и другие способы определения конечной точки, включая самые современные – с использованием ионоселективных электродов. Несколько особый случай – титрование с использованием радиоизотопов (радиометрическое титрование). Инструментализация имеет и другую цель: автоматизировать операции. Не слишком сложный титратор позволяет проводить массовые определения с большой производительностью.

 

Теория броматометрического метода анализа.

      Для титрования неорганических и органических соединений в прак­тике аналитической химии используют бром и бромат калия. Бромат является более сильным окислителем по сравнению с бромом  

()

поэтому в качестве титранта преимущественно применяют раствор бромата.

      Титрование стандартным раствором бромата основано на окислении восстановителей — олова(II), мышьяка(III), сурьмы(III), селена(IV), гидроксиламина, производных гидразина и т. п. в кислой среде

и может быть осуществлено прямым и обратным методами. Наряду с реакциями окисления — восстановления в присутствии бромидов наблюдаются также реакции присоединения брома и замеще­ние бромом, который образуется в процессе взаимодействия бромата с бромидом в кислой среде:

Поэтому очень часто титрование производят раствором смеси бромата и бромида калия в отношении 1:5.

       В методе прямого титрования определение точки эквивалентности осуществляют визуально по изменению окраски титруемого раствора, индикаторным методом (органические азокрасители) и инструменталь­ными методами. В методе обратного титрования конечную точку титрования опреде­ляют, как правило, индикацией конца титрования избытка брома в при­сутствии индикатора — крахмал-иодид.

 

Техника титрования.

      Титрование проводят в кислой среде в присут­ствии хлористоводородной или серной кислоты, способствующих мгно­венному выделению брома. Во многих случаях для улучшения растворимости анализируемого продукта наряду с водой применяют и неводные растворители (безвод­ную уксусную кислоту, спирты и др.). Во избежание улетучивания сво­бодного брома титрование, как правило, проводят при комнатной температуре, а иногда и при 0°С. В особых случаях медленно протекающих реакций окисления — восстановления прибегают к нагреванию титруе­мого раствора до 40 — 70 °С. Для предотвращения потерь брома титрова­ние проводят в конических колбах, снабженных стеклянными притер­тыми пробками. Для ускорения реакций в титруемый раствор добавляют катализаторы: сульфат марганца или ртути (II), молибдат натрия и др.

       В методах обратного титрования очень часто прибегают к поста­новке холостого опыта для того, чтобы уточнить, какое количество стан­дартного раствора титранта расходуется на титрование определенного объема реагента.

       При титровании избытка брома добавляют иодид калия, реагирую­щий с бромом с выделением йода, который оттитровывают стандартным раствором тиосульфата в присутствии индикатора — крахмала.

       Рабочий   раствор   броматометрии — бромат   калия — обычно готовят по точной навеске его кристаллической соли.  Препарат КВrО3 получается достаточно чистым после перекристаллизации из воды и высушивания при 150...180°С. Титр раствора бромата иногда проверяют йодометрическим методом, добавляя KI к от­меренному объему бромата и титруя выделившийся йод тиосуль­фатом натрия.  Водные растворы бромата  калия устойчивы не­определенно долго.  В практике используют также бромат-бро-мидные нейтральные растворы, содержащие бромат калия точно известной концентрации и примерно пятикратный избыток бро­мида калия.  При подкислении такой раствор выделяет свобод­ный бром в количестве, эквивалентном взятому количеству бро­мата. 

       Кроме того, броматометрию применяют для определения многих других неорганических и органических соединений: фенолов и их произ­водных, аминов, аскорбиновой кислоты, 8-оксихинолина (и осаждаемых этими соединениями ионов: Мg2+, А13+, В13+, Fе3+, In3+ и др.), тиомочевины, меркаптанов и т. п.

      Широкое применение в  броматометрических  определениях получила способность свободного брома вступать в реакцию замещения, присоединения и окисления-восстановления с некоторыми органическими   соединениями   по   точному   стехиометрическому уравнению без образования каких-либо побочных продуктов. Та­ким образом можно отметить два основных типа броматометрических  определений.  В реакциях первого типа  непосредственно используется реакция бромата с определяемым восстановителем, а в реакциях второго типа участвует свободный бром, выделяю­щийся  при взаимодействии бромата с бромидом. В реакциях первого типа также не исключается образование сво­бодного брома как промежуточного продукта реакции,- однако в таких реакциях бромид калия в реагирующую систему не вводят.

C6H5OH + 3Br2   3HBr + C6H2Br3OH

H2C=CH2 + Br2   H2CBr-CBrH2

      Индикаторами броматометрии являются азокрасители, такие, как метиловый оранжевый или метиловый красный. В точке экви­валентности происходит необратимое окисление индикатора с об­разованием бесцветных продуктов. Азокрасители могут окислять­ся непосредственно броматом, поэтому перед точкой эквивалент­ности обычно вновь добавляют несколько капель индикатора, который обесцвечивается в точке эквивалентности. Обратимо изменяют свою окраску при проведении броматометрических определений n-этоксихризоидин, -нафтофлавон, хинолиновый желтый и др.

 

Достоинства и недостатки броматометрического метода.

       Броматометрический метод отличается рядом достоинств по сравнению с дру­гими методами.

1.  Бромат-бромидные растворы можно применять не только для определения восстановителей и окислителей, но и для анализа органиче­ских ненасыщенных,  ароматических и гетероциклических соединений, а также для косвенного определения разнообразных ионов, осаждаемых в виде нерастворимых в воде соединений, например в виде оксихинолятов.

2.  В отличие от стандартных растворов йода или брома, применяе­мых для анализа тех же соединений, растворы бромата калия устойчивы и не меняют своего титра в течение продолжительного времени. Поэтому при пользовании броматом получаются более надежные результаты ана­лиза.

3.  При введении в бромат-бромидную смесь ионов ртути (II) увели­чивается  потенциал   системы   бром — бромид  благодаря   образованию устойчивых комплексных ионов [HgBr4]2-;  случае пре­вышает . При этом происходит окисление таких ионов и соединений, которые в отсутствие ионов ртути не окисляются бромат-бромидной смесью. Например, хром (III) легко окисляется до хрома (VI) в присутствии ионов ртути (II).

       Броматометрический метод имеет также ряд недостатков.

1. Вода, присутствующая в растворе или образующаяся в процессе титрования неводных растворов, мешает определению многих органиче­ских соединений.

2. Окисление некоторых органических соединений сопровождается нежелательными побочными реакциями гидролиза, замещения и присо­единения, вызываемыми действием ионов воды и брома.

3.  В ряде случаев реакции бромата калия с органическими веще­ствами протекают не в строго стехиометрических отношениях, что при­водит к искажению конечных результатов анализа.

 

Фенолы.

      Фенолы — производные бензола с одной или несколькими гид-роксильными группами. Их принято делить на две группы — летучие с паром фенолы (фенол, крезолы, ксиленолы, гваякол, тимол) и нелетучие фенолы (резорцин, пирокатехин, гидрохинон, пирогаллол и другие многоатомные фенолы).

      Фенолы в естественных условиях образуются в процессах метаболизма водных организмов, при биохимическом распаде и трансформации органических веществ. Фенолы являются одним из наиболее распространенных за­грязнений, поступающих в поверхностные воды со стоками пред­приятий нефтеперерабатывающей, лесохимической, коксохими­ческой, и др. В сточных водах этих предприятий содержание фенолов может превосходить 10—20 г/л при весьма разнообразных сочетаниях.

       В поверхностных водах фенолы могут нахо­диться в растворенном состоянии в виде фенолятов, фенолят-ионов и свободных фенолов. Фенолы в водах могут вступать в реак­ции конденсации и полимеризации, образуя сложные гумусоподобные и другие довольно устойчивые соединения

      Хлорирование фенолсодержащих вод при водоочистке приводит к образованию хлорфенолов (фенола, о- и м-крезолов и др.), которые даже при концентрации 1 мкг/л при­дают воде неприятный запах и вкус. Спуск в водоемы и водотоки фенольных вод резко ухудшает их общее санитарное состояние, оказывая влияние на живые ор­ганизмы не только своей ядовитостью, но и значительным изме­нением режима биогенных элементов и растворенных газов (О2, С02).

       В токсикологическом и органолептическом отношении фенолы неравноценны. Летучие с паром фенолы более токсичны и обла­дают более интенсивным запахом при хлорировании, чем неле­тучие фенолы. Наиболь­шей токсичностью отличается гидрохинон, затем по уменьшению токсичности следуют нафтепы, кспленолы, пирокатехин, крезолы, фенол,  резорцин,  пирогаллол,  флороглюцин. Токсикологические пороговые концентрации фенолов состав­ляют несколько миллиграммов в литре, органолептические значи­тельно ниже и для различных фенолов отличаются более чем в  1000 раз. Поэтому большое практическое значение имеет  суммарное содержание  фенолов.

Определение фенола.

       Большое практическое применение имеет броматометрическое определение фенола. Определение фенола основано на том, что в анализируемый раствор вводится избыток бромат-бромидной смеси, которая в кислой среде выделяет свободный бром:

Образующийся бром реагирует с фенолом:

С6Н5ОН + ЗВг2  С6Н2Вг3ОН + 3HBr

      При добавлении к этому раствору иодида калия избыточный, не прореагировавший бром окисляет иодид до йода, который титруют стандартным раствором тиосульфата натрия:

Br2 + 2I = 2Br