Заказ работы

Заказать
Каталог тем
Каталог бесплатных ресурсов

О-хлорстирол

Мы рассмотрели основные физические свойства о-хлорстирола. Коснемся также его основных химических свойств. Его химические свойства обусловлены наличием в молекуле о-хлорстирола ароматического ядра и ненасыщенной группы. Как представитель ароматических соединений о-хлорстирол будет вступать во все реакции присущие ароматическим соединениям. Он будет реагировать с водородом, галогенами, галогеноводородами с получением циклических насыщенных соединений. 

С водородом о-хлорстирол реагирует, вступая в еракцию присоединения водорода:

Но в молекуле о-хлорстирола есть также ненасыщенная группа, которая является высокореакционной и может вступать в реакции окисления до галогенокислот, вступать в реакции присоединения водорода, галогенов и галогеноводородов, но такая реакция будет конкурировать с реакцией присоединения водорода бензольным ядром. Реакция окисления легко проходит при действии окислителей:

О-хлорстирол

 

Введение. 2

1.                 Свойства о-хлорстирола. 3

2.                 Стадии синтеза о-хлорстирола: 6

3.                 Установки для проведения синтеза о-хлорстирола и его промежуточных продуктов. 11

4.                 Очистка и идентификация полученного вещества. 17

5.                 Техника безопасности при получении и хранении о-хлорстирола. 19

Выводы. 22

Список использованной литературы. 23

 

Введение.

 

В настоящее время существующие в различных химических производствах, антикоррозионной технике, машиностроении, авиастроении и других отраслях промышленности прокладочно-уплотнительные, конструкционные и защитные коррозионно-, озоно-, и термостойкие резины, пла­стмассы, парониты, эбониты, асборезины, пентапласты и т.п. материалы уже не отвечают возросшим требованиям промышленности.

Эти материалы обладают низкой коррозионной и термической стойкостью, быстро набухают и разрушаются а агрессивных средах, загрязняют эти среды, меняют их цвет и рассчитаны на длительную эксплуатацию не выше 70 – 90°С, в то время как многие современные химические процессы уже проводятся при 100 – 200°С и выше.

Поэтому одним из заданий химической промышленности и науки было создание новых коррозионностойких материалов. Эти материалы получают сополимеризацией этилена или пропилена с бромированными и хлорированными производными бензола. Поэтому и вызывает интерес методика получения о-хлорстирола, который может быть использован к качестве сополимера для производства таких коррозионностойких материалов. О-хлорстирол также находит применение как растворитель органических веществ, красок и лаков.

Главной задачей данной работы будет рассмотреть процесс получения о-хлорстирола из наиболее легкодоступного на данный момент сырья - природного газа (метана). В работе мы рассмотрим последовательность химического синтеза данного вещества, условия его получения.

Свойства о-хлорстирола.

 

О-хлорстирол является производным ароматических веществ. В соей молекуле он содержит бензольное кольцо. К бензольному кольцу присоединен атом хлора в ортоположение.

О-хлорсирол также называют: 2-хлорстирол, 2- хлорвинилбензол.

Химическая формула вещества: C8H7Cl

Молекулярная масса: 138.6

Структурная формула вещества приведена ниже:

 

 

По физическим свойствам о-хлорстирол – это желтая жидкость, довольно вязкая, с резким неприятным запахом. При сгорании образует токсичные газы , включая хлористый водород, фосген. Вещество при определенных условиях образует перекиси, приводящие к началу взрывной полимеризации. Вещество может полимеризоваться.

Наиболее распространенным видом углеводородного сырья есть природный газ, который на 95 – 98 % состоит из метана. Современная органическая химия должна выходить из того, что в будущем именно природный газ (метан) станет основным сырьем для органического синтеза.

Уже сейчас широко применяются методы получения ацетилена из природного газа – метана. Для этого применяют электрокрекинг, который проходит по уравнению:

Струю метана пропускают между электродами при температуре 1600° С и быстро охлаждают, чтобы предотвратить разложение ацетилена. Также разработан термоокислительный крекинг (неполное окисление метана кислородом воздуха)

В реакции используют теплоту частичного сгорания ацетилена. Но в данной реакции мы получаем больше продуктов и выделение ацетилена из них более сложно, чем в случае электрокрекинга.

б) синтез бензола;

ацетилен при температуре красного каления вступает в реакцию тримеризации и в результате мы получим бензол. Эту реакцию открил еще в ХІХ веке М. Бертло.

Н. Д. Зелинский и Б. А. Казанский показали, что Даная реакция значительно лучше проходит при более низких температурах и каталитическом воздействии активированного угля:

Даная реакция получения бензола еще не имеет большого распространения из-за существования более дешевых методов получения его, например из отходов коксирования угля и нефтепеработки.

в) синтез этилена из ацетилена;

Для получения стирола необходим этилен, который можно довольно легко получить, выходя из ацетилена и водорода. Ацетилен как ненасыщенный углеводород легко вступает в реакцию присоединения водорода. Реакция каталитическая, катализатором может быть платина или свинец. При использовании платины и большом количестве водорода в смеси, возможно, получение не только этилена,  но и этана, тогда как при применении свинцового катализатора реакция будет продолжаться только до получения этилена.

Реакция проводится при температуре около 300°С.

г) синтез стирола из бензола и этилена;

Рассмотрим процесс синтеза этилбензола из бензола. Продуктами этого синтеза будут бензол и этилен, получение которых мы рассмотрели выше. Реакция проходит за уравнением:

Синтез этилбензола алкилированием бензола этиленом осуществляют, применяя катализаторы на основе хлорида алюминия, фторида бора, фосфорной кислоты или цеолитов. Использование низких концентраций катализатора позволяет проводить процесс в жидкой фазе (катализатор суспензирован или растворен). Процесс проводят при  и давлении 0,3-1,0 МПа. В оптимальных условиях проведения процесса селективность получения этилбензола 99%. При проведении процесса очень важно не допускать избытка этилена в реакторе, так как это приводит к образованию диэтил- и полиэтилбензолов. Расход АІСІ3 составляет 0,25 г на тонну этилбензола. Алкилирование бензола олефинами – типичная реакция электрофильного замещения.

В современной химической технологии используют также процесс производства стирола выходя из пропилена и этилбензола:

 

 



Размер файла: 499.11 Кбайт
Тип файла: rar (Mime Type: application/x-rar)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров