Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Основы микропроцессорной техники: Задания и методические указания к выполнению курсовой работы для студентов специальности 200400 «Промышленная электроника», обучающихся по сокращенной образовательной программе: Метод. указ./ Сост. Д.С. Лемешевский. – Новокузнецк: СибГИУ, 2003. – 22 с: ил. (4)
(Методические материалы)

Значок файла Организация подпрограмм и их применение для вычисления функций: Метод. указ./ Сост.: П.Н. Кунинин, А.К. Мурышкин, Д.С. Лемешевский: СибГИУ – Новокузнецк, 2003. – 15 с. (2)
(Методические материалы)

Значок файла Оптоэлектронные устройства отображения информации: Метод. указ. / Составители: Ю.А. Жаров, Н.И. Терехов: СибГИУ. –Новокузнецк, 2004. – 23 с. (2)
(Методические материалы)

Значок файла Определение частотных спектров и необходимой полосы частот видеосигналов: Метод указ./Сост.: Ю.А. Жаров: СибГИУ.- Новокузнецк, 2002.-19с., ил. (2)
(Методические материалы)

Значок файла Определение первичных и вторичных параметров кабелей связи: Метод. указ./ Сост.: Ю. А Жаров: СибГИУ. – Новокузнецк, 2002. – 18с., ил. (2)
(Методические материалы)

Значок файла Операционные усилители: Метод. указ. / Сост.: Ю. А. Жаров: СибГИУ. – Новокузнецк, 2002. – 23с., ил. (2)
(Методические материалы)

Значок файла Моделирование электротехнических устройств и систем с использованием языка Си: Метод указ. /Сост. Т.В. Богдановская, С.В. Сычев (7)
(Методические материалы)

Каталог бесплатных ресурсов

Производные некоторых основных элементарных функций.

  1. y = xn. Если n – целое положительное число, то, используя формулу бинома Ньютона:

    (a + b)n = an+n·an-1·b + 1/2?n(n – 1)an-2?b2+ 1/(2?3)?n(n – 1)(n – 2)an-3b3+…+ bn,

    можно доказать, что

    Итак, если x получает приращение ?x, то f(x+?x) = (x + ?x)n, и, следовательно,

    ?y=(x+?x)nxn =n·xn-1·?x + 1/2·n·(n–1)·xn-2·?x2 +…+?xn.

    Заметим, что в каждом из пропущенных слагаемых есть множитель ?x в степени выше 3.

    Найдем предел

    Мы доказали эту формулу для n ? N. Далее увидим, что она справедлива и при любом n ? R.

  2. y= sin x. Вновь воспользуемся определением производной.

    Так как, f(x+?x)=sin(x+?x), то

    Таким образом,

  3. Аналогично можно показать, что

  4. Рассмотрим функцию y= ln x.

    Имеем f(x+?x)=ln(x+?x). Поэтому

    Итак,

  5. Используя свойства логарифма можно показать, что

Формулы 3 и 5 докажите самостоятельно.


ОСНОВНЫЕ ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ

Применяя общий способ нахождения производной с помощью предела можно получить простейшие формулы дифференцирования. Пусть u=u(x),v=v(x) – две дифференцируемые функции от переменной x.

  1. .
  2. (справедлива для любого конечного числа слагаемых).
  3. .
  4. .

    а) .

    б) .

Формулы 1 и 2 докажите самостоятельно.

Доказательство формулы 3.

Пусть y = u(x) + v(x). Для значения аргумента x+?x имеем y(x+?x)=u(x+?x) + v(x+?x).

Тогда

?y=y(x+

Размер файла: 67.16 Кбайт
Тип файла: rar (Mime Type: application/x-rar)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров