Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Ряды: методические указания /Сост.: М.С.Волошина, С.Ф.Гаврикова: СибГИУ. – Новокузнецк, 2005. – 42 с. (8)
(Методические материалы)

Значок файла Пределы: Метод. указ./ Составители: С.Ф. Гаврикова, И.В. Касымова.–Новокузнецк: ГОУ ВПО «СибГИУ», 2003. (8)
(Методические материалы)

Значок файла Предел. Непрерывность: Метод. указ. / Сост.: Л.А. Кильман: СибГИУ. – Новокузнецк, 2005. - с. (8)
(Методические материалы)

Значок файла Неопределенный интеграл: индивидуальные задания / Сост.: М.С.Волошина, С.Ф.Гаврикова, О.В.Олесюк: СибГИУ. – Новокузнецк, 2005. – 16 с. (9)
(Методические материалы)

Значок файла Контрольные задания для оценки остаточных знаний по дисциплине «мате- матика»./ Составители И.В. Касымова, В.Б.Королев – ГОУ ВПО «СибГИУ», Но- вокузнецк, 2005.-13с. (7)
(Методические материалы)

Значок файла Дифференциальные уравнения и их системы./ Составители: Н.Г.Бердова, А.Н.Береснев, В.И.Зимин, Л.М.Калинина, И.В. Касымова, В.А.Панамарев, О.Л.Прошина, К.Ю.Сарычев, Л.Н.Хохлова. – ГОУ ВПО «СибГИУ», Новокузнецк, 2005.-33с. (7)
(Методические материалы)

Значок файла Дифференциальные уравнения: Метод. указ. / сост. В.В. Варламов; ГОУ ВПО «СибГИУ». – Новокузнецк (9)
(Методические материалы)

Каталог бесплатных ресурсов

Проекция вектора на ось.

Пусть в пространстве даны два вектора и . Отложим от произвольной точки O векторы и . Углом между векторами и называется нименьший из углов . Обозначается .

Рассмотрим ось l и отложим на ней единичный вектор (т.е. вектор, длина которого равна единице).

Под углом между вектором и осью l понимают угол между векторами и .

Итак, пусть l – некоторая ось и – вектор.

Обозначим через A1 и B1 проекции на ось lсоответственно точек A и B. Предположим, что A1 имеет координату x1, а B1 – координату x2 на оси l.

Тогда проекцией вектора на ось l называется разность x1x2 между координатами проекций конца и начала вектора на эту ось.

Проекцию вектора на ось l будем обозначать .

Ясно, что если угол между вектором и осью l острый, то x2> x1, и проекция x2x1> 0; если этот угол тупой, то x2< x1 и проекция x2x1< 0. Наконец, если вектор перпендикулярен оси l, то x2= x1 и x2x1= 0.

Таким образом, проекция вектора на ось l – это длина отрезка A1B1, взятая с определённым знаком. Следовательно, проекция вектора на ось это число или скаляр.

Аналогично определяется проекция одного вектора на другой. В этом случае находятся проекции концов даного вектора на ту прямую, на которой лежит 2-ой вектор.

Рассмотрим некоторые основные свойства проекций.

  1. Проеция вектора на ось l равна произведению модуля вектора на косинус угла между вектором и осью:

    Доказательство. Ясно, что проекция вектора не изменится при его параллельном переносе, поэтому достаточно рассмотреть случай, когда начало вектора совпадает с началом отсчёта O оси l. Так как координата проекции начала равна нулю, то обозначим .

    1. Если угол ? острый, то из прямоугольного получаем . Откуда или
    2. Если угол ? тупой, то x< 0, . Тогда из или . Т.е. .
  2. Проекция суммы двух векторов на ось равна сумме проекций векторов на ту же ось: .

    Доказательство. Пусть . Обозначим через x1, x2 и x3 координаты проекций A1, B1, C1 на ось l точек A, B и C. Тогда . Но .

    Это свойство можно обобщить на случай любого числа слагаемых.

  3. Если вектор умножается на число ?, то его проекция на ось также умножается на это число:

    .

    Доказательство. Пусть угол между вектором и осью .

    Если ? > 0, то вектор имеет то же направление, что и , и составляет с осью такой же угол .

    При ? > 0 .

    Если же ? < 0, то и имеют противоположные направления и вектор составляет с осью угол ? – ? и .

    Следствие. Проекция разности двух векторов на ось равна разности проекций этих векторов на ту же ось.




















ЛИНЕЙНО ЗАВИСИМЫЕ И ЛИНЕЙНО НЕЗАВИСИМЫЕ СИСТЕМЫ ВЕКТОРОВ

Рассмотрим несколько векторов .

Линейной комбинацией данных векторов называется любой вектор вида , где - некоторые числа. Числа называются коэффициентами линейной комбинации. Говорят также, что в этом случае линейно выражается через данные векторы , т.е. получается из них с помощью линейных действий.

Например, если даны три вектора то в качестве их линейной комбинации можно рассматрив

Размер файла: 54.93 Кбайт
Тип файла: rar (Mime Type: application/x-rar)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров