Заказ работы

Заказать
Каталог тем

Самые новые

Значок файла Пределы: Метод. указ./ Составители: С.Ф. Гаврикова, И.В. Касымова.–Новокузнецк: ГОУ ВПО «СибГИУ», 2003 (3)
(Методические материалы)

Значок файла Салихов В.А. Основы научных исследований в экономике минерального сырья: Учеб. пособие / СибГИУ. – Новокузнецк, 2004. – 124 с. (2)
(Методические материалы)

Значок файла Дмитрин В.П., Маринченко В.И. Механизированные комплексы для очистных работ. Учебное посо-бие/СибГИУ - Новокузнецк, 2003. – 112 с. (5)
(Методические материалы)

Значок файла Шпайхер Е. Д., Салихов В. А. Месторождения полезных ископаемых и их разведка: Учебное пособие. –2-е изд., перераб. и доп. / СибГИУ. - Новокузнецк, 2003. - 239 с. (4)
(Методические материалы)

Значок файла МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЭКОНОМИЧЕСКОЙ ЧАСТИ ДИПЛОМНЫХ ПРОЕКТОВ Для студентов специальности "Металлургия цветных металлов" (2)
(Методические материалы)

Значок файла Учебное пособие по выполнению курсовой работы по дисциплине «Управление производством» Специальность «Металлургия черных металлов» (110100), специализация «Электрометаллургия» (110103) (2)
(Методические материалы)

Значок файла Контрольные задания по математике для студентов заочного факультета. 1 семестр. Контрольные работы №1, №2, №3/Сост.: С.А.Лактионов, С.Ф.Гаврикова, М.С.Волошина, М.И.Журавлева, Н.Д.Калюкина : СибГИУ. –Новокузнецк, 2004.-31с. (6)
(Методические материалы)

Каталог бесплатных ресурсов

Аналитическая геометрия в пространстве

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Рассмотрим две плоскости ?1 и ?2, заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей ?1 и ?2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

.

Пример. Определить угол между плоскостями x+2y-3z+4=0 и 2x+3y+z+8=0.

Условие параллельности двух плоскостей.

Две плоскости ?1 и ?2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит .

Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:

или

Условие перпендикулярности плоскостей.

Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .

Таким образом, .

Примеры.

  1. Составить уравнение плоскости, проходящей через точку

    M(-2; 1; 4) параллельно плоскости 3x+2y-7z+8=0.

    Уравнение плоскости будем искать в виде Ax+By+Cz+D=0. Из условия параллельности плоскостей следует, что: . Поэтому можно положить A=3, B=2, C=-7. Поэтому уравнение плоскости принимает вид3x+2y-7z+D=0.

    Кроме того, так какM? ?, то-6+2-28+D=0, D=32.

    Итак, искомое уравнение 3x+2y-7z+32=0.

  2. Составить уравнение плоскости, проходящей через точки M1(1; 1; 1), M2(0; 1; –1) перпендикулярно плоскости x+y+z=0.

    Так как M1? ?, то используя уравнение плоскости, проходящей через заданную точку, будем иметь A(x-1)+B(y-1)+C(z-1)=0.

    Далее, так как M2? ?, то подставив координары точки в выписанное уравнение, получим равенство -A-2C=0 или A+2C=0.

    Учтем, что заданная плоскость перпендикулярна искомой. Поэтому A+B+C=0.

    Выразим коэффициенты Aи Bчерез C: A=-2C, B=C и подставим их в исходное уравнение: -2C(x-1)+C(y-1)+C(z-1)=0.

    Окончательно получаем -2x+y+z=0.

  3. Составить уравнение плоскости, проходящей через точку M(-2; 3; 6) перпендикулярно плоскостям 2x+3y-2z-4=0 и 3x+5y+z=0.

    Так как M? ?, то A(x+2)+B(x-3)+C(z-6)=0.

    По условию задачи , поэтому

    Итак уравнение плоскости принимает вид 13(x+2)-8(y-3)+z-6=0 или 13x-8y+z+44=0.

ПРЯМАЯ В ПРОСТРАНСТВЕ.

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ.

ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М1(x1, y1, z1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t, что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М, лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.



Размер файла: 71.06 Кбайт
Тип файла: rar (Mime Type: application/x-rar)
Заказ курсовой диплома или диссертации.

Горячая Линия


Вход для партнеров